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SUMMARY

On the basis of Monte-Carlo simulations of the literature, it was believed that
both bootstrap and Fieller’s methods had equivalent performances for calcu-
lating confidence regions for the incremental cost-effectiveness ratio. How-
ever, we have carried out Monte-Carlo simulations using real data issued from
an economic evaluation carried out alongside a randomised clinical trial for
women with breast cancer which show that these methods do not similarly
perform in cases where the pair composed by the mean costs difference and
the mean effects difference is close to the Y-axis or to the origin of the cost-
effectiveness plane. Such situations will frequently occur in practice. In par-
ticular, we show that Fieller’s method performed significantly better than
bootstrap methods that became unstable or even inapplicable when the dif-
ference between average effects approaches statistically zero. Since Fieller’s
method seems to be the best method, we study it in detail in an analytical
way for covering all the possibilities. We prove some theorems that permit to
see that Fieller’s method is “technically” applicable in all the situations, even
near the CE plane origin. They also permit to see that the method provides
an answer for the decision-making purpose in all the situations.

Key-words: Uncertainty, incremental cost-effectiveness ratio, confidence regions, Fieller,
bootstrap.
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1 INTRODUCTION

In recent years, stochastic data on both costs and effectiveness of alternative medi-

cal strategies have been simultaneously available at the level of individual patients,

for example through collection of costs data alongside clinical trials [1, 2]. Such

data give the opportunity to summarise uncertainty associated with the results of

a cost-effectiveness (CE) analysis in the form of confidence regions, and there has

been a growing body of health economics literature dealing with the methodological

problems for calculating such confidence intervals for cost-effectiveness ratios. Vari-

ous methods for calculating confidence regions for the incremental cost-effectiveness

ratios (ICERs) have been explored [3, 4, 5, 6, 7]: they are either based on the estima-

tor of the ICER density (Taylor’s method, parametric and nonparametric bootstrap

methods) or alternatively on the bivariate density function of the pair composed by

the mean costs difference and the mean effects difference (the “box” method, the

ellipse method and Fieller’s method). Current conclusions of the literature tend to

suggest that both bootstrap and Fieller’s methods are the most appropriate and it

has been argued, on the basis of research using Monte-Carlo simulations, that both

methods obtained similar results [8, 9, 10].

However, as it will be detailed in section 2.2, it could be hypothesised that

methods based on the density function of the ICER estimator, such as bootstrap

methods, may become unstable or even mathematically inapplicable in the case of

the difference between average effects of the two treatments approaching statisti-

cally zero or in the case of the (mean costs difference, mean effects difference) pair

also approaching statistically zero. Fieller’s method, based on the bivariate density

function of the pair may not encounter these problems.

In practice, many empirical studies may indeed correspond to such cases because

clinical trials are often designed to detect small differences in effectiveness between

treatments and medical innovations often imply some deterioration of the CE ratio

for a limited improvement in effectiveness compared to standard treatment.

In this paper, we use Monte-Carlo simulations to compare the performances of

bootstrap and Fieller’s methods for calculating confidence regions of ICER in the

problematic cases in which differences in clinical effectiveness are close to statisti-

cal unsignificance or in which both the differences in clinical effectiveness and the
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differences in costs between the two health care programs are close to statistical un-

significance. Monte-Carlo simulations will be applied to empirical data issued from

a randomised clinical trial (RCT) that corresponds to the first type of situation and

to data extrapolated from this same source in order to correspond to the latter type

of situation. In both problematic cases, we show that mathematical limitations of

the bootstrap methods should lead to consider Fieller’s method, which is based on

less restrictive conditions, as the method of choice.

Since Fieller’s method seems to be the best method, we study it in detail in an

analytical way for covering all the possibilities. We prove some theorems that permit

to see that Fieller’s method is “technically” applicable (i.e. it provides a confidence

region) in all the situations, even near the CE plane origin. They also permit to

see that the method provides an answer for the decision-making purpose in all the

situations.

2 METHODS

In this section, after the definition of the ICER, we present bootstrap and Fieller’s

methods. Then, we present the empirical data that were used for processing Monte

Carlo simulations in order to compare the performances of the various methods.

These data illustrate a typical case in which clinical differences are only close to

statistical significance. These data were also translated for illustrating the case

where costs differences are close to statistical unsignificance in addition to the small

clinical differences between the two treatments already present in the data. In the

last subsection, methodology of these simulations is detailed.

2.1 Definition of the ICER

In cost-effectiveness analysis, one (or more) new treatments (T1) are compared to

(one or more) standard treatments (T0) on the two-fold basis of the cost and the

medical effects of each treatment. In this context, the appropriate summary measure

of cost-effectiveness is the ICER which is defined as follows:

R =
µC1 − µC0

µE1 − µE0

=
µ∆C

µ∆E

,
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where µ is the true mean value of costs and effects for treatments number 1 and

number 0.

Since the true means corresponding to the theoretical population are not known,

the ICER can be estimated as follows, on the basis of data collected from the two

groups of patients:

R̂ =
C1 − C0

E1 − E0

=
∆C̄

∆Ē
,

where C1, C0 are the sample mean of the costs and E1, E0 in the two treatments

arms are the sample mean of effects.

2.2 Parametric and nonparametric bootstrap methods

Generally speaking, bootstrap methods have been particularly prized because the

bootstrap law constitutes a better approximation of the law of the statistic of interest

than the asymptotic law [11]. In our case, this method involves building up an

empirical estimate of the sampling distribution of the ICER estimator.

The parametric bootstrap method involves assuming that the (∆C̄, ∆Ē) pair

follows a bivariate normal law with defined mean and variance-covariance matrix

such that: (
∆C̄
∆Ē

)
∼ N

((
µ∆C

µ∆E

)
,

(
σ2

∆C σ∆C∆E

σ∆C∆E σ2
∆E

))
,

µ∆C and µ∆E denote the expected (mean) values, σ2
∆C and σ2

∆E denote respectively

the variances of the mean costs difference and of the mean effects difference, and

σ∆C∆E denotes the covariance between the mean costs difference and the mean ef-

fects difference. All these parameters will be estimated by the empirical estimators.

This bootstrap method consists in replicating many times (denoted B) bootstrap

estimates of the (∆C̄, ∆Ē) (denoted (∆C̄∗
b , ∆Ē∗

b ), b = 1, ..., B) following the bi-

variate normal law defined above, for generating a vector of bootstrap estimates

(R∗
1, . . . , R

∗
B) which is an empirical estimate of the sampling distribution of the

ICER estimator.

An alternative method has the substantial advantage of making no parametric

assumptions about the sampling distribution of ∆C̄ and ∆Ē. This non parametric

bootstrap method consists in building up an empirical estimate of the sampling

distribution of the ICER estimator, by resampling from the original data in the

following way:
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1. Sample with replacement n1 (cost, effect) pairs and n0 pairs respectively, from

the sample of patients who underwent treatment (T1) and treatment (T0) re-

spectively. It should be noted that we make a drawn from the (cost, effect)

pair for each treatment group as to preserve the correlation between costs and

effects.

2. Calculate C̄∗
1 , Ē∗

1 , C̄∗
0 and Ē∗

0 the bootstrap simulations of C̄1 and Ē1, C̄0 and

Ē0 respectively.

3. Calculate the bootstrap replicate R∗
b of the ICER given by the equation:

R∗
b =

C∗
1 − C∗

0

E∗
1 − E∗

0

.

4. After repeating this three-stage process many times (denoted B), we obtain a

vector of bootstrap estimates (R∗
1, . . . , R

∗
B) which is an empirical estimate of

the sampling distribution of the ICER estimator.

Once the sampling distribution of the ICER estimator has been estimated, there

exist several approaches for estimating the bounds of the confidence interval, such as

the percentile method [6, 12], the percentile-t method [6, 12] and the Bias Corrected

and Accelerated method [6, 13], which the two latter methods take into account any

asymmetry of the distribution.

In this paper, we have tested the six available modalities of bootstrap methods

for calculating confidence intervals for the ICER: parametric bootstrap methods

(associated with the percentile method denoted P0, the percentile-t method denoted

Pt0 and the Bias Corrected and Accelerated (BCA) method denoted BCA0) as well

as nonparametric bootstrap methods (associated with the percentile method denoted

P1, the percentile-t method denoted Pt1 and the BCA method denoted BCA1).

All bootstrap methods have however, a general limitation. They are inapplicable

if µ∆E = 0 statistically. In that case, the theoretical ratio is not statistically defined

(i. e. R = ±∞) and a confidence interval given numerically of the form [RL, RU ] has

no mathematical sense; the findings of the cost-effectiveness analysis are therefore

meaningless. In addition, some of these methods such as the percentile-t method

require estimating the variance of the ratio, which is an additional cause of insta-

bility when µ∆E approaches statistically zero. Finally, bootstrap methods have the
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disadvantage of excluding confidence regions having the form ]−∞, RL]∪ [RU , +∞[.

These restrictions tend to make bootstrap methods quite inappropriate when the

mean effects difference approaches statistically zero or when the pair composed by

the mean costs difference and the mean effects difference approaches statistically

(0, 0).

2.3 Method based on Fieller’s theorem

2.3.1 General theory

This analytic method, is based on the joint distribution function of the (mean costs

difference, mean effects difference) pair which is assumed to follow a bivariate Gaus-

sian distribution. This method involves calculating confidence regions using the

pivotal function technique, which consists in resolving a second degree equation in

the ICER. We briefly recall the general context of Fieller’s theorem [3]. It is assumed

here that X1 and X2 are two random normally distributed variables, such that:

X ∼ N(η, Ω) with X =

(
X1

X2

)
, η =

(
η1

η2

)
and Ω =

(
ω2

1 ω12

ω12 ω2
2

)
,

and it is proposed to determine a (1−α) confidence region for η1

η2
. For this purpose,

we draw up the (statistic) Z = X1 − ρX2 and we note that:

Z ∼ N(0, ω2
1 + ρ2ω2

2 − 2ρ ω12) under the assumption that “ρ =
η1

η2

”.

Therefore, we have:
Z2

ω2
1 + ρ2ω2

2 − 2ρ ω12

∼ χ2(1)

⇒ P

(
(X1 − ρX2)

2

ω2
1 + ρ2ω2

2 − 2ρ ω12

≤ k1−α

)
= 1− α ,

where k1−α is the (1−α) quantile of the chi-squared distribution with one degree of

freedom. Hence:

P
(
(X1 − ρX2)

2 − k1−α(ω2
1 + ρ2ω2

2 − 2ρ ω12) ≤ 0
)

= 1− α .

If we denote:

Q(ρ) = (X1 − ρX2)
2 − k1−α(ω2

1 + ρ2ω2
2 − 2ρ ω12),

we can write the function Q as a two degree polynomial function in the following

way:

Q(ρ) = xρ2 + yρ + z ,
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with x = X2
2 − k1−αω2

2, y = 2(k1−αω12 −X1X2) and z = X2
1 − k1−αω2

1. To find the

(1− α) confidence region for η1

η2
, the following inequation must be solved:

Q(ρ) ≤ 0. (1)

The roots of the polynomial function Q (denoted RL and RU) are given by the

following formulae:

RL =
X1X2 − k1−αω12 −

√
(k1−αω12 −X1X2)2 − (X2

2 − k1−αω2
2)(X

2
1 − k1−αω2

1)

X2
2 − k1−αω2

2

,

RU =
X1X2 − k1−αω12 +

√
(k1−αω12 −X1X2)2 − (X2

2 − k1−αω2
2)(X

2
1 − k1−αω2

1)

X2
2 − k1−αω2

2

.

If the variances and covariances are unknown, they can be replaced by their estima-

tors, in which case k1−α is interpreted as the (1−α) quantile of a Fisher distribution

with the appropriate degree of freedom.

2.3.2 Application to the ICER

We assume that (Cj, Ej) is a random vector with mean (µCj
, µEj

), variance (σ2
Cj

, σ2
Ej

)

and correlation λi for j=0 and 1.

The variables used in Fieller’s method correspond to the following values:

X1 = ∆C̄,

X2 = ∆Ē,

ω2
1 = σ2

C0
/n0 + σ2

C1
/n1,

ω2
2 = σ2

E0
/n0 + σ2

E1
/n1,

ω12 = λ1σC1σE1/n1 + λ0σC0σE0/n0.

After solving the inequation 1, (1 − α) confidence regions for the ICER can

have different forms (see table 1). However, the precise forms of confidence regions

obtained by Fieller’s method has not been studied when the difference between

average effects of the two treatments approaches statistically zero or when the (mean

costs difference, mean effects difference) pair also approaches statistically zero.
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2.3.3 The various forms of the confidence regions

depending on the sign of the coefficient before the second degree term of the poly-

nomial function (denoted x) indicating its concavity and depending on the sign of

the discriminator of the polynomial function (denoted ∆), the various forms of the

confidence regions obtained with Fieller’s method are shown in Table 1. where RL,

∆ < 0 ∆ = 0 ∆ > 0
x > 0 impossible impossible

[
RL, RU

]
convex function case case
x = 0 impossible R

]−∞, RU
]

if y > 0
linear function case

[
RL, +∞[

if y < 0
x < 0 R R ]−∞, RU ] ∪ [RL, +∞[
concave function

Table 1: Form of the confidence region

RU denote the roots of the polynomial function Q. In case where x > 0, we have

RL < RU , otherwise if x < 0, we have RL > RU . Lastly, if x = 0, then RL = RU . It

should be noted that x < 0 corresponds to the case where µ∆E is statistically equal

to zero for a test of size α. The table above was studied in details and each form

of confidence region was rigorously interpreted and proved (for the interpretations,

see appendix 2.3.4 and for the proofs see see appendix A). In particular, a theorem

showed that when the discriminator is negative or null, this corresponds to the case

where we cannot distinguish (µ∆C , µ∆E) from (0, 0).

Thus, from the theoretical point of view, this table makes it possible to conclude

Fieller’s method does not a priori suffer from the restrictions previously underlined

with bootstrap methods: Fieller’s method is applicable all the time without no

condition and the confidence region can have the form of the complement of an

interval. Only the normality hypothesis of the (∆C̄, ∆Ē) pair could raise problem

but this will be tested below through Monte-Carlo simulations (see paragraph 3.2).

2.3.4 Interpretation of the various forms of confidence regions obtained
with Fieller’s method

The “impossible” cases

The cases denoted “impossible” in Table 2.3.3 correspond to cases that cannot occur.

They are explained by the following theorems 1 and 1 bis (for the proof see appendix
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A). These theorems permit to analyse this case that was considered by Heitjan et

al. [19] but that was not commented in their paper.

Theorem 1

x > 0 ⇒ ∆ > 0

Theorem 1 bis

x ≥ 0 ⇒ ∆ ≥ 0.

I.e. when the polynomial function is convex (or linear), the discriminator is always

positive (or null), and the (1 − α) confidence region takes the form of an interval

such as [RL, RU ].

The whole real line

In the case of ∆ < 0 and x < 0, some authors have pointed out that “Fieller’s

method sometimes produces imaginary results” because RL and RU were calculated

with the formula 2 and 2. Other authors have arged that “no solution exists” (among

others, see Willan and O’Brien [14]). In fact, in this case, RL and RU must not be

directly calculated by the formula 2 and 2 but rather by resolving the inequation 1

and the confidence region obtained is the whole real line, since Q is concave.

It can seems surprising to obtain R as a (1− α) confidence region, but theoreti-

cally, there is absolutely no contradiction with the definition of a confidence region:

R is a possible realisation of a (1−α) confidence region, (that is a random region that

contains the ICER (1− α)× 100 times over 100). But in practice, how to interpret

this result ? In particular, Heitjan [19] has found that the confidence region is the

whole real line but he did not explain how to use or interpret this result. Theorem

2 gives equivalent conditions that permit to answer this question (for the proof see

appendix A.2).

Theorem 2

Denoting X =

(
∆C̄
∆Ē

)
, and Ω = Var(X), the following statements are

equivalent:

1. ∆ > 0 ⇔ ‖ΓX‖2
2 > k1−α with Γ = Ω−1/2, ‖.‖2 indicates the Eu-

clidean norm and k1−α is the (1 − α) quantile of the chi-squared

9



distribution with one degree of freedom and also corresponds to the

(1−α′) quantile of the chi-squared distribution with two degrees of

freedom (with α′ > α 1).

2. ∆ > 0 ⇔ to reject the hypothesis (H0) : (µ∆C , µ∆E) = (0, 0) for a

test of size α′ > α.

3. ∆ > 0 ⇔ X is located outside the ellipse defined by the following

equation: ‖ΓX‖2
2 = k1−α.

Theorem 2 indicates that when the discriminator is negative or null, the ratio is

poorly defined: the direction of the sector is not statistically defined and the con-

fidence region obtained is the whole real line. More precisely (see statement 2),

(µ∆C , µ∆E) cannot statistically be distinguished from (0, 0). This means that either

both the treatments are equivalent on the two-fold basis of the cost and the medical

effects of each treatment, either the sample size is not sufficiently large for distin-

guishing between them. In this latter case, two other possibilities are available: we

can either work on larger groups of patients, or we can calculate a confidence interval

with a weaker confidence level. Anyway, this result is informative. No other method

is able to give more information than Fieller’s method which has the great advan-

tage of detecting the cases where any answer can be brought from the statistical

point of view contrary to bootstrap methods which provide numerical results all the

time whereas the confidence region can have no mathematical sense, i.e. when the

ICER is not statistically defined (of the form “0
0
”) or when it is infinite (of the form

“1
0
”). Other approaches such as “the acceptability curves” or “ the net benefits ap-

proach” do not give informative results too, since when (µ∆C , µ∆E) is unsignificant,

neither the net benefit statistic cannot be statistically distinguished from zero and

we cannot determine whether a treatment is cost-effective.

Nevertheless, it is sufficient to reject (H0) : (µ∆C , µ∆E) = (0, 0) for a test of size

α′ (see statement 2) in order that Fieller’s method provide a region different from

the whole real line, and this condition is less restricting than a classical test of size

α (since α′ is greater than α).

1because ‖ΓX‖22 ∼ χ2(2). For example, for α = 0.05, we have α′ = 0.15.
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The complement of an interval

In the case of ∆ > 0 and x < 0, the confidence region has the form of the complement

of an interval such that ]−∞, RU ] ∪ [RL, +∞[. To understand the intuition of this

form of confidence region for the ICER, it can be interpreted as the complement

of the confidence interval obtained calculating the confidence region for the inverse

of the ICER (i.e. the ratio between the mean effects differences and the mean

costs differences). The form of this kind of confidence region can seem problematic

for decision-making purposes, because it extends into more than one quadrant and

it contains infinite values, and it has not been dealt with in the literature. In

fact, it is sufficient to proceed in exactly the same way as for confidence intervals

extending into only one quadrant. The confidence region for the ICER corresponds

to an angular sector on the CE plane. If this angular sector is located to the

left (respectively to the right) of the straight line associated with the ceiling ratio

corresponding to some maximum value of the ICER that society is prepared to pay

to achieve the additional effectiveness, the new therapy is dominated (respectively

dominant). Lastly, when the ceiling ratio belongs to the confidence region the two

treatments are not significantly different. In this context, even if negative or infinite

values belong to the angular sector (i.e. this angular sector contains the Y-axis), we

clearly see that there are any problems at the decision-making level.

2.4 Empirical data used in Monte-Carlo simulations

In order to test the above theoretical hypothesis that Fieller’s method is more ap-

propriate than bootstrap methods when applied in situation in which the mean

effects difference approaches statistically zero or when the pair composed by the

mean costs difference and the mean effects difference also approaches statistically

(0, 0), we compare the application of these methods to empirical data issued from a

real RCT. In this trial (multi-centric trial Pegase 01 initiated by the National French

Federation of Anti Cancer Regional Centers), high dose chemotherapy supported by

recombinant hematopoietic growth factors and blood stem cell transplantation was

compared with a conventional chemotherapy control group in the context of breast

cancer for high risk patients (N+ > 7). The main variable for measuring effective-
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ness was length of survival without relapse during the follow-up period (equal to

three years here). In this trial, direct medical costs were measured for each patient

on the basis of physical units for each cost component weighted by the unit prices of

these resources expressed in 2000 French Francs (FF). The descriptive statistics are

summarised in table 2. In our example, the ICER of the new treatment obtained

from these data is equal to 21967 FF per month gained without relapse.

Group Sample s.e. c.v. c.c. Skewness Kurtosis
variable mean
Treatment: n=155 0.06
Cost (FF) 117077.67 22070.43 0.19 1.57 7.95
Effect (months of life
gained without relapse) 33.48 14.5 0.43 -0.03 2.40
Control: n=145 -0.14
Cost (FF) 34206.37 17461.15 0.51 6.80 65.90
Effect (months of life
gained without relapse) 29.71 15.3 0.52 0.51 2.38
Difference -0.03
Cost (FF) 82871.30 2307.90 0.03 0.19 0.08
Effect (months of life
gained without relapse) 3.77 1.7 0.46 0.01 0.01

s.e. denotes the standard error, c.c. corresponds to an estimator of correlation coefficient between
costs and effects for each treatment and between mean costs difference and mean effects difference,
c.v. denotes the coefficient of variation of the costs, of the effects for each treatment, of the mean
costs difference and of the mean effects difference, Skewness and Kurtosis denote estimators of the
Skewness and Kurtosis coefficients.

Table 2: Descriptive statistics of the clinical trial

After noting that the coefficient of variation summarises the relative proximity

of an estimate to zero, it can be seen from table 2 that the coefficient of variation

of the difference between mean effects was almost equal to 0.5, this means that the

difference between mean effects are not significant. This exactly correspond to one

of the two problematic cases for estimating the ICER that we intended to study.

In view of the Skewness and the Kurtosis (see Table 3), it can also be noted

that the costs data are skewed and leptokurtic, which suggests that these data are

not normally distributed. To check this point, we tested whether the Skewness was

equal to zero and whether the kurtosis was equal to 3 and performed a Jarque-Bera
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test [16] with both hypothesises combined. The version bootstrap of three tests

programmed by Christian de Peretti (GREQAM, Université de la Méditerranée)

were used. They showed that all the data were not normally distributed except for

the effects of the treatment group for which the p-value was equal to = 0.263 in the

Jarque-Bera test (the costs data of the two treatments groups provides a p-value

equal to zero in the three tests and the effects of the control group gives a p-value

equal to 0.015 in the Jarque-Bera test). Thus, these data will led us to test the

impact of their non normality on the performances of the methods, in particular

with Fieller’s method.

2.5 The Monte-Carlo simulations

Monte-Carlo simulations were carried out to assess the performances of the seven

methods discussed above for calculating confidence region for the ICER with a

nominal coverage equal to 0.95.

2.5.1 Methodology of the simulations

At the beginning, this study was performed by varying the following three compo-

nents: the joint density function of the cost and effect for each treatment (which was

either a standard theoretical law that we assumed to be Gaussian or an empirical

distribution), the correlation between costs and effects for each treatment group,

the distance between the (∆C̄, ∆Ē) pair and the origin of the CE plane. Then,

since we observed that the distribution of costs and effects as well as their corre-

lation coefficient had little impact on the the performances of the methods (if the

same parameters are used), we focus on the variation of the distance between the

(∆C̄, ∆Ē) pair and the origin of the CE plane and we only report the study based

on the empirical distribution of costs and effects which is the most realistic case.

Three possible locations are considered for the (∆C̄, ∆Ē) pair: in one case, the

(∆C̄, ∆Ē) is far from the origin of the CE plane (denoted case 1), in another case

corresponding to the problematic case in which differences in clinical effectiveness

are close to unsignificance, the pair is close to the costs-axis (denoted case 2) and

in the last case corresponding to the problematic case in which both the differences

in clinical effectiveness and the differences in costs between the two treatments are
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close to unsignificance, the pair is close to the origin of the CE plane (denoted

case 3). It should be noted that case 1, which is not problematic, is given as an

illustration to check that all methods perform well in that case as it has been shown

in the literature. The distance between the (∆C̄, ∆Ē) pair and the origin of the CE

plane is determined from the coefficient of variation of ∆C̄ and that of ∆Ē, denoted

cv(∆C̄) and cv(∆Ē) respectively (for the values, see table 3).

The real data already corresponds to the case denoted 2 and in this case, the

distribution used is the empirical distribution obtained by resampling from the real

data (that is, the uniform law applied to the (cost,effect) pair of the data) To obtain

cases 1 and 3 respectively, we transform the real data so that the coefficient of

variation of the difference between mean effects become equal to 0.05 and so that

the coefficient of variation of the difference between mean costs became equal to

0.46 respectively and the empirical distribution used is obtained by resampling from

modified data. The data are translated so that the standard errors of the modified

data is identical to that of the original data as follows: E ′
1 = E1 +34.2 for obtaining

case 1 (C ′
1 = C1 − 77853.6 for obtaining case 3 respectively) and other data remain

unchanged, where E ′
1 (C ′

1 respectively) denotes the modified effect (cost respectively)

data for (T1) . Table 3 sums up the various cases studied.

Location of the (∆C̄, ∆Ē) pair cv(∆C̄) cv(∆Ē)
Case 1 far from the origin of the CE plane 3% 5%
Case 2 close to the costs-axis of the CE plane 3% 46%
Case 3 close to the origin of the CE plane 46% 46%

Table 3: The various cases studied in Monte-Carlo simulations

We have carried out B = 999 bootstrap replications and R = 10, 000 Monte-

Carlo simulations, except for the percentile-t method, with which we performed only

1, 000 Monte-Carlo simulations because this method is very costly in computing time

and as we will see, the results were too unsatisfactory for it to be worth attempting

to achieve greater accuracy. We keep the same random numbers sequence for the

Monte-Carlo experiments as for the bootstrap resampling procedure so as to reduce

the experimental errors.
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2.5.2 Criteria for assessing the performances of the various methods

The first criterion used to assess the performances of the seven computation meth-

ods studied was the overall probability of coverage (i.e. the percentage of samples

where the true (mean costs difference, mean effects difference) pair fell inside the

estimated confidence region) with its standard error. The procedure with the best

confidence region was the one that came closest to the nominal coverage level of 0.95.

The average length of the confidence across the simulated samples region with its

standard error as well as the average angle of the confidence sector with its standard

error were also used as criteria for evaluating the methods. Generally, the length of a

confidence interval is a satisfactory criterion, since the narrower this interval is, the

more efficient the method will be due to some likelihood considerations. In the case

of Fieller’s method, the length of the confidence region is no longer a satisfactory

criterion since in case of a confidence region having the form a the complement of an

interval, this length will be infinite even if the region is optimal with respect to the

likelihood of the (µ∆C , µ∆E) pair. In this latter case, we rather consider the average

angle of the confidence sector with its standard error for avoiding this problem: the

smallest the angle is, the more efficient the method will be.

3 RESULTS

3.1 Various confidence regions obtained with the real data

Figure 1 gives an idea of the uncertainty associated with each of the methods stud-

ied. This figure shows 5000 replications of the incremental cost and incremental

effect pairs, and the rays whose slopes correspond to the upper and lower limits of

0.95 confidence regions for the ICER obtained using Fieller’s method and nonpara-

metric bootstrap methods (the percentile, percentile-t, and BCA methods). Figure

1 is given as an illustration of the confidence regions obtained with each method

but th results of Monte-Carlo simulations have to be examined for assessing the

performances of the various methods.
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Figure 1: Confidence regions with Fieller’s and nonparametric bootstrap methods

3.2 Results of Monte-Carlo simulations

With the location case 1, we observed that all the methods performed well. So, we

only report in tables 4 and 5 the performances criteria in location cases 2 and 3

respectively. The same notations as for paragraph 2.2 are preserved.

With case 2, all the methods have relatively good performances except for the

percentile-t method which become very unstable (see table 4).

The poor performances of the percentile-t method (the coverage is smaller than

0.80 and the average angle is around equal to 170o) are surprising because this

methods has a better convergence rate than the percentile method, and should

therefore theoretically work better than the percentile method. But locally, in finite

samples (between 100 and 200) and when µ∆E approaches statistically zero, the

fact of “studentizing” the estimated ICER statistic makes it unstable and makes it

farer from a pivotal statistic than the estimated ICER. This explains the substantial
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Method Coverage Length (×103FF) Angle (o)
Fieller 0.950(0.002) ∞ 0.00467 (0.00021)
P0 0.973(0.002) 339047.33(437399.90) 74.72(88.69)
Pt0 0.779(0.007) 4845708.60(22490012.80) 169.38(42.42)
BCA0 0.915(0.002) ∞ 55.78(83.24)
P1 0.973(0.002) 326054.57(428734.06) 72.87(88.36)
Pt1 0.743(0.007) 4670597.16(20931815.94) 172.98(34.84)
BCA1 0.920(0.002) ∞ 42.81(76.63)

The values in parenthesis represent the standard error of the estimators.

Table 4: Performances of the methods on location case 2

Method Coverage Length (×103FF) Angle (o)
Fieller 0.952(0.002) ∞ 63.26(85.40)
P0 0.971(0.002) 20470.65(30258.49) 113.57(86.48)
Pt0 0.873(0.007) 245663.69(1358599.53) 177.21(21.91)
BCA0 0.930(0.002) ∞ 117.81(85.24)
P1 0.972(0.002) 19878.46(29634.71) 119.14(84.76)
Pt1 0.887(0.007) 234050.73(917526.56) 178.57(15.50)
BCA1 0.930(0.002) ∞ 103.41(88.61)

The values in parenthesis represent the standard error of the estimators.

Table 5: Performances of the methods on location case 3

under-coverage observed for confidence regions and why this method performed less

efficiently than the percentile method. So, it is better not to use this method in the

case of ratios.

As regards the percentile method, the theoretical study might have led us to

expect that this method would give poor results. This method is usually criticised

because it does not take the estimator bias into account. Among other authors,

Briggs et al. [6] have pointed out that: “the ICER estimator is a biased estimator

and the percentile method of interval estimation does not adjust for bias”. But usu-

ally, when we talk about bias, we understand that it is a bias due to a translation

of the estimator distribution which changes the confidence interval, with respect to

the true value of the parameter and this parameter can no longer belong to this

interval. Besides, in our case, the bias is also due to a distortion of the distribution,

which does not cause the confidence interval to shift with respect to the true value

of the parameter. This explains why this method gives satisfactory results in our

case with a coverage equal to 0.973 and an angle equal to 72.87o in case of the
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nonparametric bootstrap. We also observed that the percentile (respectively BCA)

method systematically provided confidence intervals with over (respectively under)

coverage, whatever the location of the data. It should be noted that the nonpara-

metric bootstrap method perfomed slightly better than the parametric bootstrap

method in case of the empirical distribution.

As regards Fieller’s method, it performed quite perfectly with a coverage equal

to 0.950 and with an almost null angle. With case 3, in addition to what has been

said previously, the existence of the variance of R̂ used in the percentile-t method

to “studentize” the statistic is not guaranteed and this explains why this method

gave poor results in terms of the three criteria (see table 5). As in case 2, we

observed that this method performed less efficiently than the percentile method. As

regards bootstrap methods in general, they became more unstable when the (mean

costs difference, mean effects difference) pair approaches statistically zero. With

percentile and BCA methods, we observed that the coverage is almost similar to the

location case 2 but the average angle of the confidence sector increased a lot and

was greater than 100o.

The question can be asked as to whether Fieller’s method is stable when the

(mean costs difference, mean effects difference) pair approaches statistically zero.

The results showed that there is no problem here with this method and that the

method performed quite well with a coverage almost equal to 0.95 and with around

a twice smallest angle than with percentile and BCA methods (see table 5). The

only problem with Fieller’s method could come from the normality hypothesis of

the (µ∆C , µ∆E) pair especially as data are often strongly non Gaussian in practice.

With the sample size of our data, the results showed that there is no problem.

Although the behaviour of the density function of this pair with small samples lay

out of the scope of this paper, it has been studied with Monte-Carlo simulations.

We have shown that even with data strongly non Gaussian and when the sample

size is relatively small (from 30), the density function of the (µ∆C , µ∆E) pair is close

to the normality thanks to the Central Limit Theorem; this involves that Fieller’s

method can be applied all the same and performs almost perfectly. To conclude,

Monte-Carlo simulations have shown that Fieller’s method performs well, in all the

situations tested and even in the most problematic ones.
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4 DISCUSSION

We have focused on the performances of Fieller’s and bootstrap methods, which are

usually considered as the best methods for calculating confidence regions for the

ICER. Other methods such as the ellipse method and Taylor’s method have not

been dealt with because they have worst performances than bootstrap and Fieller’s

methods: it is well known that the ellipse method is too approximative and that

Taylor’s method is restrictive and constraining because of the normality hypothesis

only valid in the asymptotic context.

In this paper, we have shown that contrary to previous recommendations of the

literature, Fieller’s and the classical bootstrap methods (without re-ordering) have

not equivalent performances from the theoretical point of view, in the case of the

difference between average effects of the two treatments approaching statistically

zero or in the case of the (mean costs difference, mean effects difference) pair also

approaching zero. This has been confirmed by Monte-Carlo simulations applied on

empirical data. Our Monte-Carlo simulations clearly show that the classical boot-

strap methods encounter serious problems in these latter’ cases and limitations to

their use: bootstrap methods become unstable when the mean effects difference ap-

proaches zero statistically and the percentile-t method in particular is very unstable

and not suitable with ratios. On the reverse, Fieller’s method is quite perfect and

stable in a variety of situations even with skewed data and/or in the case of the

(mean costs difference, mean effects difference) pair also approaching zero. In addi-

tion, the normality hypothesis is not very restrictive for the application of Fieller’s

method.

Previous Monte-Carlo studies of the Literature [8, 9, 10] which compared the

performances of Fieller’s method and of classical bootstrap methods concluded that

they had similar performances. Indeed, this seems to have been the case because

the way the true miscoverage of confidence regions was calculated in these studies

was not very accurate for distinguishing the methods. For example, the number of

Monte-Carlo simulations used respectively in the study of Polsky et al. [8] and in

the study of Briggs et al. [9] was equal respectively to 500 and 1000 for one popu-

lation experimented, which corresponds to a standard error of the estimated overall

miscoverage respectively equal to 0.01 and to 0.007 with a nominal miscoverage
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level chosen equal to 0.05 (i.e. the coefficient of variation of the estimated overall

miscoverage was respectively equal to 0.2 and 0.14), which was not accurate enough

for a reliable estimation with a nominal miscoverage level equal to 0.05.

Second, previous studies mostly dealt with data configured in such a way that

the difference between average effects of the two treatments or the (mean costs

difference, mean effects difference) pair were highly significant. For example, in [10],

the coefficient of variation of ∆Ē was equal to 0.2. Let us examine in details the

coefficients of variation of the mean effects difference chosen in the studies of the

literature. Before, it should be noted that the fact that µ∆E is statistically equal to

zero for a test of size 0.05 (respectively 0.01)) is equivalent to the following statement

in terms of coefficient of variation: |cv(∆Ē)| > 0.51 (respectively |cv(∆Ē)| > 0.38).

In the studies of Polsky et al. [8] and of Briggs et al. [9], the Monte-Carlo experiment

was performed in different populations defined, among other things, by levels of

correlation between costs and effects, distributions of costs, distribution of effects

or the coefficients of variation of the mean costs difference and of the mean effects

difference. With the study of Polsky et al. [8], if the correlation between costs

and effects was taken equal to zero, the coefficients of variation of the mean effects

difference were equal to 0.35 and 0.44 respectively with each distribution of effects

chosen. With the first distribution having a coefficient of variation equal to 0.35,

the (∆C̄, ∆Ē) pair was not particularly close to the Y-axis of the CE plane since

µ∆E was statistically equal to zero only for a test of size 0.01. With the second

distribution having a coefficient of variation equal to 0.44, the (∆C̄, ∆Ē) pair could

seem relatively close to the Y-axis, but since the results were obtained by calculating

the mean miscoverage across the various populations, problematic cases did not

appear and were hidden in the other cases. In addition, even if the miscoverage

of the worst case and that of the best case were presented, their standard errors

were too large (because of the insufficient number of simulations) to provide reliable

findings. Likewise, for the study of Briggs et al. [9], the coefficients of variation of

the mean effects difference varied from 0.1 to 0.44, the latter value of the coefficients

of variation is relevant in terms of neighbourhood of the (∆C̄, ∆Ē) pair to the Y-axis

of the CE plane and the same comments applied.

The last reason why equivalent performances have been Previously found with
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Fieller’s and bootstrap methods, is that the miscoverage was measured calculat-

ing the mean miscoverage on several DGPs: this hides the problematic cases and

reduces artificially the standard error of the estimated miscoverage decrease. In

addition, we can question the theoretical justification of using the mean of estima-

tors across several populations which does not estimate the same parameter since

the performances of the methods normally have to be calculated with a given Data

Generating Process (DGP). Now, by calculating the mean on several DGPs, the bad

performance obtained with a particular DGP is hidden in the mass of the other per-

formances. In this context, the problematic cases cannot be detected and this gives

the impression that all the methods have good and similar performances. However,

what makes Monte-Carlo simulations particularly useful is precisely to show how

the performances of the methods vary depending on the various parameters of the

DGP and to detect problematic cases.

In recent years, there have been growing criticisms about the use of confidence in-

tervals to represent uncertainty associated with results from cost-effectiveness stud-

ies. For example, Willan and Lin [17] Stated that “the confidence intervals for the

ICER i) can include undefined values or ii) may even be completely undefined”.

Problem i) refers to confidence regions which contain infinite values (i.e. when µ∆E

is statistically equal to zero) having the form of the complement of an interval.

We have shown that there are no mathematical problems and no problem at the

decision-making level if we work with confidence regions of this form, obtained with

Fieller’s method. Problem ii) may refer to confidence regions having the form of

the whole real line given by Fieller’s method (see table 2.3.3). It can seem surpris-

ing and meaningless to obtain the whole real line as a 1 − α confidence region but

theoretically, there is absolutely no contradiction with the definition of a confidence

region: R is a possible realisation of a 1− α confidence region, that is a realisation

of a random region that contain the ICER (1 − α) × 100 times over 100. In fact,

this kind of confidence region corresponds to the case where (µ∆C , µ∆E) cannot be

statistically distinguished from (0, 0) and the direction of the confidence sector is

not statistically defined. This form of confidence region is informative since it indi-

cates that the data are configured in such a way that either both the treatments are

equivalent, either the sample size is not sufficiently large for distinguishing between
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them, on the two-fold basis of the cost and the medical effects of each treatment. In

this case, two other possibilities are available: we can either work on larger groups of

patients, or we can calculate a confidence interval with a weaker coverage. Anyway,

no other method is able to give more information than Fieller’s method which has

the great advantage of detecting the cases where any answer can be brought from

the statistical point of view contrary to bootstrap methods which provide numerical

results all the time, even if they have no mathematical sense (i.e. when the ICER is

not statistically defined or infinite). To conclude, Fieller’s method is applicable all

the time whatever the form of the confidence region obtained and the criticisms i)

and ii) above are not really valid.

Some problems have been also pointed out with negative ratios Among other

authors, Heitjan et al. [18] reproached to bootstrap methods the misplacement of

negative values of the ICER of QIV at the left of bootstrap distribution, if we num-

ber the quadrants of the CE plane from I (the upper right) counterclockwise to IV

(the lower right), this artificially reduces both upper and lower bootstrap confidence

intervals for the ICER thereby invalidating coverage probability, and Briggs [10]

questioned about how such a confidence interval should be interpreted. This effec-

tively shows what happens when bootstrap methods are applied in the particularly

unstable case where the mean effects difference approaches zero statistically. For

using bootstrap methods all the same, Heitjan et al [18] has had the original idea

to set ICERs of QIV equal to +∞ and to set ICERs of QII equal to zero so that

cost-effectiveness states be appropriately ordered. Other authors such as Briggs et

al. [6] has suggested to order negative ICER resulting from negative effects at the

top of the ordered list if ICERs instead of at the bottom. But, both these methods

are artificial because they do not make bootstrap method stable. In fact, it is not

the bootstrap method which is a poor method, but it is rather the fact to apply the

bootstrap on an unstable distribution, the distribution of the ICER estimator, which

raises problems, in particular when the ICER is not statistically defined. Again, our

results show that this problem can be avoided with Fieller’s method.

A general criticism often made about confidence regions for ICERs, for example

by Briggs et al. [7], is that these regions do not directly address the question of

whether a new intervention is cost-effective, in particular when the ceiling ratio
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belongs to the confidence region. But this is not what they are intended to do, and

Fieller’s method does not per se solve this problem. However, inference can easily be

done with the ICER: acceptance regions or the p-value can be calculated with the

same methods as those used for calculating confidence regions. Besides, we must

insist on the fact that confidence regions constitute only a descriptive statistical

tool which can be used by decision-makers in a first step to quantify uncertainty

approximately, rather than using the ICER alone. In a second step, to be able to

make a decision, the only way is to use inference. Another objection of the latter

authors’ is that the nominal level of the confidence region is often fixed equal to

0.05, this assumes the convention that 0.05 significance is the appropriate level,

whereas this level can vary depending on the intervention under consideration, in

particular because of the number of patients to treat. In fact, instead of computing

only a confidence region with Fieller’s method associated with a particular level, we

can easily plot the confidence bounds according to various nominal levels and the

decision-maker will therefore be able to choose a suitable nominal level ant to have

the associated confidence region.

5 CONCLUSION

Some of the recent ”disappointment” in the literature towards the use of confidence

regions for ICERs may have been partly due to a mistaken judgement of equivalence

between bootstrap and Fieller’s methods to calculate the ICERs, whereas, in fact,

Fieller’s method is quite robust even in the most problematic cases. A wider use of

Fieller’s method in future empirical CE studies may help rehabilitating the use of

ICERs as a useful tool to inform decision-making.
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A Proofs of theorems in Fieller’s method

A.1 Proof of theorems 1 and 1 bis

Preliminary remark

We keep the same notations as for the section 2.3.1. Particularly, η1 (respectively

η2) corresponds to µ∆C (respectively µ∆E) and X1 (respectively X2) corresponds

to ∆C (respectively ∆E). The discriminator of the polynomial function Q is the

following

∆ = y2 − 4xz,

∆ = 4k
(1)
1−α

[
ω2

2X
2
1 − 2ω12X1X2 − ω2

1X
2
2 )− k

(1)
1−α

]
,

where k
(1)
1−α denotes the (1 − α) quantile of the chi-squared distribution with one

degree of freedom. Let γ = ω2
1ω

2
2 − ω2

12 and c = corr(X1, X2). We assume that

γ 6= 0, otherwise X1 and X2 are perfectly correlated and Ω is not invertible. So, ∆

can be writen as follows

∆ = 4k
(1)
1−αγ

[
ω2

2

γ
X2

1 − 2
ω12

γ
X1X2 +

ω2
1

γ
X2

2 − k
(1)
1−α

]
.

If we set

Γ =

( ω2√
γ

− ω12√
γω2

0 1
ω2

)
(2)

∆ can be written as follows

∆ = 4k
(1)
1−αγ

[
‖ΓX‖2

2 − k
(1)
1−α

]
,

where X =

(
X1

X2

)
and ‖.‖2 denotes the Euclidian norm. The matrix γ is strictly

positive:

γ = ω2
1ω

2
2(1− c2) with ω2

1 > 0, ω2
2 > 0 et 1− c2 > 0 because c ∈]− 1, 1[. Thus

∆ > 0 ⇔ ‖ΓX‖2
2 > k

(1)
1−α. (3)

Proof of the theorem 1

We assume that x > 0. We have

x > 0 ⇔ X2
2 − k

(1)
1−αω2

2 > 0 ,

⇔
(

X2

ω2

)2

> k
(1)
1−α,
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this means that η2 6= 0 statistically. It follows from equation 2 that

‖ΓX‖2
2 =

(
ω2

γ
X1 − ω12

ω2γ
X2

)2

+

(
X2

ω2

)2

. (4)

However, we have

(
ω2

γ
X1 − ω12

ω2γ
X2

)2

≥ 0 and

(
X2

ω2

)2

> k
(1)
1−α,

Thus

‖ΓX‖2
2 > k

(1)
1−α and ∆ > 0 , see equation 3.

Proof of the theorem 1 bis

By extending equation 3, we have

∆ ≥ 0 ⇔ ‖ΓX‖2
2 ≥ k

(1)
1−α. (5)

We assume that x ≥ 0. We have

x ≥ 0 ⇔
(

X2

ω2

)2

≥ k
(1)
1−α.

It results from equation 4 that

‖ΓX‖2
2 ≥ k

(1)
1−α.

Lastly, we have ∆ ≥ 0 (see equation 5) and thus x ≥ 0 ⇔ ∆ ≥ 0.
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A.2 Proof of the theorem 2

• Proof of statement 1): It should be noted that (ΓT Γ)−1 = Ω and we have

∆ > 0 ⇔ ‖ΓX‖2
2 > k

(1)
1−α, with Γ = Ω−1/2, see equation 3.

• Proof of statement 2): We have (X1, X2) ∼ N

((
0
0

)
, Ω

)
under (H0). Let

Γ such that (ΓT Γ)−1 = Ω, then ΓX ∼ N

((
0
0

)
, I2

)
under (H0), where I2

denotes the matrix identity of R2. Thus ‖ΓX‖2
2 ∼ χ2(2) under (H0).

A test of size α′ is done having as null hypothesis (H0) : (η1, η2) = (0, 0). The

optimal test yields a rejection region with a size of α′ having the following

form

‖ΓX‖2
2 > k

(2)
1−α′ ,

where k
(2)
1−α′ denotes the (1− α′) quantile of the chi-squared distribution with

two degrees of freedom. If k
(2)
1−α′ and k

(1)
1−α are identified in the previous in-

equality, it results from equation 3 that ∆ is strictly positive.

Lastly, ∆ > 0 is équivalent to reject the null hypothesis (H0) : (η1, η2) = (0, 0)

for the test of size α′ > α such that k
(2)
1−α′ = k

(1)
1−α.

• Proof of statement 3): This proof results immediately from statement 1).
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