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Abstract
In cost-utility analysis, one or more medical treatment(s) are compared with

a standard treatment on the two-fold basis of their cost and their utility. How-
ever, the health utility values are rarely available and are generally predicted by
extrapolating (using a “mapping” function) a known clinical questionnaire. In the
literature this mapping is not accounted for when uncertainty is handled, leading to
wrong decision-making with serious consequence on the patient’s health. The pur-
pose of this paper is to build a confidence region around the incremental cost-utility
ratio (or the incremental cost per QALY ratio), accounting for the uncertainty com-
ing from the questionnaire extrapolation. Analytic and nonparametric bootstrap
procedures are then proposed.
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1 Introduction

In cost-effectiveness analysis (CEA), one or more medical treatment(s) are compared with
a standard treatment on the two-fold basis of their cost and their medical effectiveness
by decision-makers. Only recently, the utility was taken into account instead of the
sole effectiveness. Since the utility measure is rarely available, it is often extrapolated
from a technical questionnaire. In practice, the utility is measured on a sample in a
reference study, as well as a clinical questionnaire is collected. A mapping function
is then estimated between the utility measure and the questionnaire on the reference
sample. Then, for a new sample, only the clinical questionnaire is collected, and the
utility measure is predicted for the patients by extrapolating the questionnaire using the
estimated mapping. For instance, in Rheumatoid Arthritis, the EuroQol-5D measure is
extrapolated from the Health Assessment Questionnaire (HAQ) or the Disease Activity
Score (DAS28) (see Ariza-Ariza et al. [2006], Nord et al. [1992], Longworth et al. [2005]).
For other examples, see among others Torrance [1976], Krabbe et al. [1997], Dolan and
Sutton [1997], O’Leary et al. [1995], Torrance et al. [1996].

In Tsuchiya et al. [2002], the authors convert Asthma Quality of Life Questionnaire
(AQLQ) into EQ5D indices. They propose a simple transformation (linear), multi-linear
regressions over the various domains or items. The Generalized Linear Model (GLM)
can also be cited to transform the dependent variable into an s-shaped. The dependent
variable is transformed into an s-shaped non-linear variable approaches 1, but does not
reach it. The logit transformation can also be applied. The obvious shortcoming of this in
the context of Tsuchiya et al. [2002] is that there are many responses with observed EQ-
5D index of 1.00, and the transformation will imply dropping these observations (because
the transformed values approach infinity). Tsuchiya et al. [2002] adapted this procedure
by standardizing the raw EQ-5D scores to the range [0,1], based on an artificial range,
say, [-0.5, +1.1], and then transforming this. In their paper, Tsuchiya et al. [2002], given
the additional complication of their model, the arbitrary nature of the standardization
and the transformation, and the fact that the maximum predicted EQ-5D scores of the
simple linear models hardly exceed 1.00, the associated benefits of GLM do not seem to
outweigh its costs. Therefore Tsuchiya et al. [2002] decided not to use GLM. In Stevens
et al. [2006], Shmueli [2007], the authors propose mapping between Visual Analogue
Scale and Standard Gamble data using Power models. The authors assume that the
transformation function does not vary across individuals and that there is independence
across observations. Linear, quadratic, cubic and power functions are estimated. The
quadratic and cubic models use the value form and are constrained to pass through 0 and
1.

In their paper, Stevens et al. [2006], Shmueli [2007], Salomon and Murray [2004],
Longworth et al. [2005] report the prediction of their models for the mean utility. How-
ever, no confidence interval of this prediction is given. The absolute error of the model is
provided, but it not the estimate error of the mean estimator. In their paper, Rivero-Arias
et al. [2009] also report the mean utility on the out-of-sample. They provide a confidence
region for the mean utility. They argue that “In terms of predicting uncertainty around
EQ-5D mean estimates, their model estimated tighter 95% CIs when compared to the
actual 95% CIs.” However, these confidence regions are under-estimated (this will be
shown theoretically in subsection 3.3 and empirically in subsection 4.2).

Consequently, in this paper, we propose a method to handle the statistical uncer-
tainty around the cost and utility simultaneously. More precisely, the purpose of this
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paper is to build a confidence region around the incremental cost-utility ratio (ICUR),
accounting for the uncertainty coming from the questionnaire extrapolation, commonly
called “mapping”. We show that if the extrapolated utility values are used to compute
a confidence region as if they were the observed values, this procedure dramatically de-
creases the confidence region so that the conclusion is not reliable since the uncertainty is
largely underestimated. This spurious decrease in uncertainty is not accounted for in the
studies of the literature as well as in the CEAs conducted in the pharmaceutical industry.
Furthermore, decision-making coming from these results, can be misleading.

In this paper, analytic and nonparametric bootstrap procedures are proposed to build
the confidence region for the ICUR accounting for the questionnaire extrapolation pro-
cedure. The performance of the methods is assessed using Monte Carlo experiments for
various sample sizes and for various models (linear, random coefficients, non-Gaussian,
non-linear). Then, the methods are made valid from real data issued from a randomized
controlled clinical trial dealing with Hepatitis C, whose objective is to measure the impact
of the therapeutic education in the undertaking. And finally, an out-of-sample validation
is carried out to check the performance of the various methods on real data.

The remainder of this paper is organized as follows. section 3 proposes several methods
to handle uncertainty around the ICUR accounting for mapping extrapolation. section 4
provides the Monte Carlo results about the performance of the methods. section 5 pro-
vides an application to Hepatitis C as well as a cross sample validation. Finally, section 6
concludes.

2 Background: the incremental cost-utility ratio

2.1 Definition and estimation

In economic evaluations, an ICUR statistic in which a new therapy (T = 1) is compared
with a standard therapy (T = 0) is defined by:

ICUR =
µC1 − µC0

µU1 − µU0

, (1)

where µ is the true mean value of (subscripts) costs (C) and utility (U) for treatments
number 1 and number 0. Since the true means corresponding to the theoretical population
are not known, the ICUR can be estimated as follows, on the basis of data collected from
two groups of patients, each undergoing one of the forms of therapy (group number 1,
consisting of n1 individuals, underwent treatment (T = 1) and group number 0, consisting
of n0 individuals 1, underwent treatment (T = 0)):

ÎCUR =
C1 − C0

U1 − U0

=
∆C̄

∆Ū
, (2)

where C1, C0 are the sample mean of the costs and U1, U0 are the sample mean of utility
in the two treatment arms.

1n1 is generally different from n0.
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2.2 Assumptions and statistical properties

Assumption 1: Utility distribution

It is assumed that the utilities of treatment T = 0, 1 follow independent random
variables with [0, 1] support and with distribution DUT

as follows:

UT,i ∼ DUT
(µUT

, σ2
UT

), (3)

where i denotes the individual.

Since the support is finite, all the moments of the distribution are finite.

Assumption 2: Existence of the mapping

It is assumed that the utility measure can be explained by some variables X.

UT,i = f(XT,i, εT,i; βT ), (4)

εT,i ∼ i.i.d.N(0, σ2
εT

), (5)

where f is a function that depends on a parameter vector βT , and εT,i is
independent of XT . It should be noted that βT is specific to the treatment.

Let us consider a reference sample of size nref
T where the utility measure is known and

the current sample where the utility is unknown. The aim of mapping is to assess the
current sample mean utility:

µUT
= E(UT,i) = E(f(XT,i, εT,i; βT )).

Assumption 3: Cost distribution

It is assumed that the costs of treatment T = 0, 1 follow independent random
variables with (0, +∞) support and with distribution DCT

as follows:

CT,i ∼ DCT
(µCT

, σ2
CT

), (6)

where σ2
CT

< ∞. i denotes the individual.

Assumption 4: Cost-Utility dependence

It is assumed that the utility measure and the cost are correlated for individual
i and treatment T :

Cov(UT,i, CT,i) = σUCT
(7)

Although the data in question do not follow normal distributions, we can generally
apply the Central Limit Theorem (CLT), partly thanks to the fact that each sequence
of pairs of random variables (C1,i, U1,i)i=1,···,n1 , (C0,i, U0,i)i=1,···,n0 are independent and
identically distributed (because the data were obtained in a randomized trial). Therefore,
C1, C0, U1 and U0 are asymptotically normally distributed, and the same applies for ∆C̄
and ∆Ē as the difference between normally distributed variables. 2

2The estimated ICUR does not necessarily have a defined mean or a defined variance, mainly owing
to the fact that the denominator of the ratio can be statistically close to zero. In this case, the estimated
ICUR will be very large (so that it is statistically close to infinite) or indeterminate, depending on
whether ∆C̄ is also statistically close to zero, and the distribution of the estimated ICUR will be close
to a Cauchy distribution (whose moments are infinite).
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2.3 Linear approximation of the mapping

2.3.1 Utility modeling and estimate

If a first order approximation of the function f in Equation 4 was calculated, it can be
assumed that the utility measure is approximated by the following equation:

UT,i = XT,iβT + εT,i, (8)

where the constant term is assumed to be contained in XT . Thus,

µUT
= E(XT,i)βT .

The estimator usually used is:

µ̂UT
=

1

nT

nT∑
i=1

ÛT,i =
1

nT

nT∑
i=1

XT,iβ̂
ref
T = X̄T β̂ref

T (9)

where Ûi are the predicted values for the utility measure, β̂ref
T = (Xref′

T Xref
T )−1Xref′

T Uref
T

the estimate of βT in the reference sample. It should be noted that:

µ̂UT
=

1

nT

ι′nT
XT βT +

1

nT

ι′nT
XT (Xref′

T Xref
T )−1Xref′

T εrefT , (10)

where ιnT
= (1, . . . , 1)′. Then, we have the following properties: E(µ̂UT

) = E(XT )βT .
The estimator is unbiased, and can be used to assess the mean utility. However, to take a
decision, the uncertainty has also to be accounted for. The problem, which will be handle
in section 3, is to estimate the variance of µ̂UT

.

2.3.2 Cost estimate

The mean cost can be estimated as follows:

C̄T =
1

nT

nT∑
i=1

CT,i. (11)

Under Assumption 4, and applying the Central Limit Theorem (CLT) as nref
T −→∞, we

obtain:

C̄T ∼ N

(
µCT

,
1

nT

σ2
CT

)
. (12)

The variance of CT,i can be estimated as follows:

σ̂2
CT

=
1

nT − 1

nT∑
i=1

(
CT,i − C̄T

)
. (13)

2.3.3 Utility-Cost dependence modeling and estimate

σUCT
= Cov(XT,i,1, CT,i)βT,1 + · · ·+ Cov(XT,i,K , CT,i)βT,K + Cov(εT,i, CT,i), (14)

where K is the number of explanatory variables, X0 corresponds to the constant term.
Let us denote Cov(XT,i,k, CT,i) = γT,k, (γT,1, . . . , γT,K) = γT , and Cov(εT,i, CT,i) = γεT

. It
should be noted that Cov(εT,i, CT,i) is not necessarily equal to 0, since for an individual
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i, if its health status is deteriorated, it will also increase (in general) the corresponding
cost. The covariance vector can be estimated as follows:

γ̂T =
1

nT

nT∑
i=1

(XT,i − ιnT
X̄T )′(CT,i − C̄T ), (15)

where ιnT
= (1, . . . , 1) and X̄T = 1

nT

∑nT

i=1 XT,i.

3 Confidence regions for the ICUR accounting for

mapping

First, we recall here the Fieller’s method which was used in the context of cost-effectiveness
analysis, thus with no mapping. This method will be used latter in the context of map-
ping. Second, we propose three methods for handling mapping.

3.1 Recall of the Fieller’s method (case of no mapping)

We briefly recall the general context of Fieller’s theorem Fieller [1954] (see also Heitjan
[2000]). It is assumed here that X1 and X2 are two random normally distributed variables
such that:

X ∼ N(η, Ω) with X =

(
X1

X2

)
, η =

(
η1

η2

)
and Ω =

(
ω2

1 ω12

ω12 ω2
2

)
, (16)

and it is proposed to determine a (1− α) confidence region for η1

η2
. For this purpose, we

draw up the (statistic) Z = X1 − ρX2 and we note that:

Z ∼ N(0, ω2
1 + ρ2ω2

2 − 2ρ ω12) under the assumption that ρ is equal to
η1

η2

.

Therefore, we have:
Z2

ω2
1 + ρ2ω2

2 − 2ρ ω12

∼ χ2(1), (17)

⇒ P

(
(X1 − ρX2)

2

ω2
1 + ρ2ω2

2 − 2ρ ω12

≤ k1−α

)
= 1− α ,

where k1−α is the (1 − α) quantile of the chi-squared distribution with one degree of
freedom. To find the (1 − α) confidence region for η1

η2
, the following inequation must be

solved:
Q(ρ) ≤ 0, (18)

where
Q(ρ) = xρ2 + yρ + z, (19)

with x = X2
2 − k1−αω2

2, y = 2(k1−αω12 −X1X2) and z = X2
1 − k1−αω2

1.
We assume that (CT

i , ET
i ) are independent random 2-vectors with mean (µCT

, µT
E),

variance
(
(σT

C)2, (σT
E)2

)
and covariance σT

CE for T = 0, 1. The variables used in Fieller’s
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method correspond to the following values:

X1 = ∆C̄,

X2 = ∆Ē,

ω2
1 = σ0

C
2
/n0 + σ1

C
2
/n1,

ω2
2 = σ0

E
2
/n0 + σ1

E
2
/n1,

ω12 = σ0
CE/n0 + σ1

CE/n1.

After solving the inequation 18, (1−α) confidence regions for the ICER can have different
forms. Depending on the sign of x, defined in Equation 19, and depending on the sign
of the discriminant ∆ of the polynomial function Q, the various forms of the confidence
region obtained with Fieller’s method are shown in Table 1.

Table 1: Form of the confidence region
∆ < 0 ∆ = 0 ∆ > 0

x > 0 impossible impossible
[
RL, RU

]
Q convex case case

x = 0 impossible R
(
−∞, RU

]
if y > 0

Q linear case
[
RL, +∞

)
if y < 0

x < 0 R R (−∞, RU ] ∪ [RL, +∞)
Q concave

RL and RU are the roots of the polynomial function Q, given by the following formulas:

RL =
X1X2 − k1−αω12 −

√
(k1−αω12 −X1X2)2 − (X2

2 − k1−αω2
2)(X

2
1 − k1−αω2

1)

X2
2 − k1−αω2

2

, (20)

RU =
X1X2 − k1−αω12 +

√
(k1−αω12 −X1X2)2 − (X2

2 − k1−αω2
2)(X

2
1 − k1−αω2

1)

X2
2 − k1−αω2

2

. (21)

For a detailed analyze of all the cases, see Siani and de Peretti [2003]. 3

3.2 “Naive” confidence region

A naive, and wrong, way to compute the variance of µ̂UT
–that can be found in some

papers of the literature– would be:

V̂ Naive (µ̂UT
) =

1

nT

[
1

nT − 1

nT∑
i=1

(
ÛT,i − µ̂UT

)2
]

, (22)

3Siani and Moatti [2003] analyzed all the method of the literature for calculating a confidence region
for the incremental cost effectiveness ration (ICER). They found that the only two methods that are
reliable are Fieller’s method and the “re-ordered” bootstrap method. Siani et al. [2004], Siani and
de Peretti [2010] then focused on the performance of Fieller’s and “reordered” bootstrap methods in the
problematic cases, frequently occurring in practice, of the difference between average effects of the two
treatments approaching statistically zero or of the (mean costs difference, mean effects difference) pair
also approaching statistically zero using Monte Carlo simulations. Their Monte Carlo simulations show
that the non-reordered bootstrap method performs worse than Fieller’s method in these problematic
cases.
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and the covariance between µ̂UT
and C̄T :

Ĉov
Naive (

µ̂UT
, C̄T

)
=

1

nT

[
1

nT − 2

nT∑
i=1

(
ÛT,i − µ̂UT

) (
CT,i − C̄T

)]
. (23)

The standard deviation in Equation 22 seems to be used in Rivero-Arias et al. [2009]
to compute the confidence interval for the mean utility. A naive way to provide a (1 −
α)-confidence region for the ICUR is to provide the following moments to the Fieller’s
method:

X1 = ∆C̄ = C̄1 − C̄0, (24)

X2 = ∆Û = µ̂U1 − µ̂U0 , (25)

ω̂2
1 = σ̂2

C1
/n1 + σ̂2

C0
/n0, (26)

ω̂2
2 = V̂ Naive (µ̂U1) + V̂ Naive (µ̂U0) , (27)

ω̂12 = Ĉov
Naive (

µ̂U1 , C̄1

)
+ Ĉov

Naive (
µ̂U0 , C̄0

)
. (28)

The confidence region for the ICUR is then given by Table 1, Equation 20, and Equa-
tion 21 when using the moments above.

3.3 Analytic confidence region

In the case of a linear approximation, the variance of µ̂UT
can be estimated as follows:

V̂ (µ̂UT
) =

1

nT

β̂ref
T

′Ω̂XT
β̂ref

T + σ̂2

εrefT

X̄T (Xref
T

′Xref
T )−1X̄T

′. (29)

See proof in Appendix, subsection A.2. It should be noted that

V̂ (µ̂UT
) = V̂ Naive (µ̂UT

) + σ̂2

εrefT

X̄T (Xref
T

′Xref
T )−1X̄T

′. (30)

In Equation 22, the term σ̂2

εrefT

X̄T (Xref
T

′Xref
T )−1X̄T

′ is missing. The covariance between

µ̂UT
and C̄T can be estimated as follows:

Ĉov
(
µ̂UT

, C̄T

)
=

1

nT

γ̂T
′β̂ref

T . (31)

See proof in Appendix, subsection A.3. The confidence region for the ICUR is then given
by Table 1, Equation 20, and Equation 21 when using the following moments:

X1 = ∆C̄ = C̄1 − C̄0, (32)

X2 = ∆Û = µ̂U1 − µ̂U0 , (33)

ω̂2
1 = σ̂2

C1
/n1 + σ̂2

C0
/n0, (34)

ω̂2
2 = V̂ (µ̂U1) + V̂ (µ̂U0) , (35)

ω̂12 = Ĉov
(
µ̂U1 , C̄1

)
+ Ĉov

(
µ̂U0 , C̄0

)
. (36)

These analytic confidence region is restricted to a linear framework with Gaussian
error terms. It can easily be extended to a nonlinear framework, using an Edgeworth ex-
pansion, but it will be an approximation. Consequently, we prefer to propose a bootstrap
methodology, which will account for nonlinear specification, which may be used (such
as logistic specification for instance). In addition, using nonparametric bootstrap, error
terms with non-Gaussian distribution can also be accounted for.
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3.4 Nonparametric bootstrap confidence region

In this subsection, we propose a methodology for building a confidence region based on
the nonparametric bootstrap technique to compute the moments of the estimators. For a
general presentation of the percentile-t method, see Hall [1992], Davidson and MacKinnon
[1993], Efron and Tibshirani [1993], Hjorth [1994], and Shao and Tu [1995]. A mapping
model is chosen:

UT,i = f(XT,i, εT,i; βT ), (37)

CT,i = g(UT,i, νT,i; θT ), (38)

where XT is a regressor matrix, and the functions f and g are known and are parametric
in the sense that they depend on a parameter vector βT or θT . εT,i and νT,i are not
assumed to be Gaussian. V (εT,i) = σ2

εT
, and V (νT,i) = (σνT

)2. The confidence region is
built as follows:

1. Equation 37 and Equation 38 are estimated on the reference sample, providing β̂ref
T ,

ε̂refT , (σ̂ref
εT

)2, θ̂ref
T , ν̂ref

T , and (σ̂ref
νT

)2.

2. A bootstrap Data Generating (DGP) has to be defined. It may be either parametric

or semiparametric, characterized by β̂ref
T , θ̂ref

T , and by any other relevant estimates
that may be needed. In a general case, we propose:

Xref,b
T,i ∼ i.i.d. uniform distribution on (Xref

T,i )i, (39)

εref,bT,i ∼ parametric or nonparametric specification based on ε̂refT , (40)

Uref,b
T,i = f(Xref,b

T,i , εref,bT,i ; β̂ref
T ), (41)

νref,b
T,i ∼ parametric or nonparametric specification based on ν̂ref

T , (42)

Cref,b
T,i = g(Uref,b

T,i , νref,b
T,i ; θ̂ref

T ), (43)

Xb
T,i ∼ i.i.d. uniform distribution on (XT,i)i, (44)

ˆ̂
β

ref,b
T = estimate of β in Uref,b

T,i = f(Xref,b
T,i , εi; β), (45)

Û b
T,i = f(Xb

T,i, 0;
ˆ̂
β

ref,b
T ), (46)

(47)

for T = 1, 0 and i = 1, . . . , nref
T . The distribution of εb

i will be discussed later. f
and g have to be chosen. For simplicitys sake, a linear model is chosen here:

U b
T,i = Xb

T,iβ̂
ref
T + εb

T,i, (48)

Cb
T,i = U b

T,iθ̂
ref
T + νb

T,i, (49)

where XT is assumed to contain the constant term, but a more specific nonlinear
model can be chosen in practice in accordance with the data.

3. B bootstrap samples are generated:

(Xb
T,i)

nT
i=1, (U

b
T,i)

nrefT
i=1 , (Cb

T,i)
nT
i=1,

for T = 1, 0 and b = 1, . . . , B.
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4. For each of these samples, we compute β̂ref
T -denoted β̂T,b

in -, ∆Û b = µ̂U1,b

out
− µ̂U0,b

out
=

X̄1,b

outβ̂
1,b

in − X̄0,b

outβ̂
0,b

in and ∆C̄b = C̄1,b

out − C̄0,b

out.

5. The variance-covariance matrix of X1 = ∆C̄ = C̄1 − C̄0 and X2 = ∆Û = µ̂U1 − µ̂U0

is then computed as follows:

ω̂2
1 =

1

B

B∑
b=1

(
∆C̄b −∆C̄

)2
, (50)

ω̂2
2 =

1

B

B∑
b=1

(
∆Û b −∆Û

)2

, (51)

ω̂12 =
1

B

B∑
b=1

(
∆C̄b −∆C̄

) (
∆Û b −∆Û

)
. (52)

6. The confidence region is obtained by applying Fieller’s method to the moments
computed using bootstrap techniques.

We consider the following way of generating the bootstrap residuals εb
T,i and νb

T,i (see
Weber Weber [1984]). The εb

T,i are generated by independent uniform draws with re-
placement among the vector with the typical element ε̃T,i constructed as follows:

1. Calculate (PXT
)i,i, i = 1, . . . , nref

T , the diagonal elements of the projection matrix
on XT .

2. Calculate
ε̂T,i√

1−(PXT
)i,i

, ∀i = 1, . . . , nref
T .

3. Recenter the vector that results.

4. Rescale it so that it has the variance (σ̂T
ε )2.

This permits to correct the heteroskedasticity in the residuals due to the regressors. The
same procedure is applied for νb

T,i.

4 Performance of the methods: Monte Carlo exper-

iments

Data Generating (DGP) are use to generate simulated data samples. The methods are
applied to each simulated sample j = 1, . . . , S , and it is examined if each confidence
region j contains or not the true value ICUR of the ratio (which is known, since the
DGP is known, conversely to real data). The coverage c of the confidence regions can be
estimated as follow:

ĉ =
1

S

S∑
j=1

I (µU ∈ Intervalj) . (53)

The standard deviation of this Monte Carlo estimate of the coverage is
√

1
S
c(1− c), where

c is the true coverage.

10



In our Monte Carlo experiments, we choose the confidence level 1 − α = 0.95. The
number of bootstrap replications is B = 999. The number of Monte Carlo replications
is S = 10, 000. If the true coverage c = 0.95, the standard deviation of the Monte Carlo
estimate of the coverage is 0.002179. At most (where c = 0.5) the standard deviation is

0.005. Several values for nref
T and nT are chosen. Small values for nref

T and large values
for nT are first allow to reflect the case where the utility is assessed only on a small
subsample, and then extrapolated to the other patients.

4.1 Data Generating Process

A variety of DGP are proposed to check the robustness of the methods: linear, nonlinear,
with non-Gaussian error terms.

4.1.1 Linear Case

UT,i = βT
0 + βT,1 ·XT

1i + β2 ·XT
2i + εT,i, (54)

CT,i = βT
C,0 + βT

C,1 · UT,i + νT,i, (55)

XT
1i ∼ i.i.d.U([0, 1]), (56)

XT
2i ∼ i.i.d.B(0.5, 3), (57)

εT,i ∼ i.i.d.N(0, (σT
ε )2), (58)

νT,i ∼ i.i.d.N(0, (σT
ν )2). (59)

The parameters values are set to:
β1

0 = 0.2, β1
1 = 0.7, β1

2 = 0.3, σε1 = 0.15, β1
C,0 = 0.35, β1

C,1 = 0.5, σ1
ν = 0.15.

β0
0 = 0, β0

1 = 0.5, β0
2 = 0.1, σε0 = 0.15, β0

C,0 = 0.35, β0
C,1 = 0.5, σ0

ν = 0.15.
We have E(U1

i ) = 1, E(C1
i ) = 0.85, E(U0

i ) = 0.4, E(C0
i ) = 0.55, ICUR = 0.5.

4.1.2 Random Linear Case

The model is the same, but the parameters vary randomly across the Monte Carlo repli-
cations:

β1
0 ∼ i.i.d.N(0.2, 0.22) , β0

0 ∼ i.i.d.N(0, 02), (60)

β1
1 ∼ i.i.d.N(0.7, 0.72) , β0

1 ∼ i.i.d.N(0.5, 0.52), (61)

β1
2 ∼ i.i.d.N(0.3, 0.32) , β0

2 ∼ i.i.d.N(0.1, 0.12), (62)

σε1 ∼ i.i.d.U([0.15 · 0.5, 0.15 · 1.5]) , σε0 ∼ i.i.d.U([0.15 · 0.5, 0.15 · 1.5]), (63)

β1
C,0 ∼ i.i.d.N(0.35, 0.352) , β0

C,0 ∼ i.i.d.N(0.35, 0.352), (64)

β1
C,1 ∼ i.i.d.N(0.5, 0.52) , β0

C,1 ∼ i.i.d.N(0.5, 0.52), (65)

σ1
ν ∼ i.i.d.U([0.15 · 0.5, 0.15 · 1.5]) , σ0

ν ∼ i.i.d.U([0.15 · 0.5, 0.15 · 1.5]). (66)

We have E(UT,i|βT ) = (1, 0.5, 1.5)βT , E(CT,i|βT , θT ) = (1, E(UT,i|βT )) θT .

4.1.3 Non-Gaussian Random Linear Case

The model is the same as in Equation 54–Equation 57, but the error terms follow the
uniform distribution:

εT,i ∼ i.i.d.U([−2, 2]) ∗ σT
ε , (67)

νT,i ∼ i.i.d.U([−2, 2]) ∗ σT
ν . (68)
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The parameters follow the same distributions as in Equation 60–Equation 66. Then, we
also have E(UT,i|βT ) = (1, 0.5, 1.5)βT , E(CT,i|βT , θT ) = (1, E(UT,i|βT )) θT .

4.1.4 Nonlinear Case

UT,i = F [β0 + β1 ·X1i + β2 ·X2i + εi] (69)

CT,i =
(
βT

C,0 + UT,iβ
T
C,1

)
χ2(1) (70)

F is the cumulative distribution function of a normal variable. The parameters values
are set to:
β1

0 = −0.5, β1
1 = 0.7, β1

2 = 0.3, σε1 = 0.3, β1
C,0 = 0.25, β1

C,1 = 0.5.
β0

0 = −0.7, β0
1 = 0.5, β0

2 = 0.1, σε0 = 0.3, β0
C,0 = 0.25, β0

C,1 = 0.5.
We have E(U1

i ) = 0.61791142, E(C1
i ) = 0.55895571, E(U0

i ) = 0.38208858, E(C0
i ) =

0.44104429, ICUR = 0.5.

4.2 Performance

The coverage of the various confidence regions, computed using Monte Carlo experiments
for various samples sizes, are presented in Table 2. The sizes are chosen to correspond
to a mapping assessment on a small subsample, and then an extrapolation of the utility
values to the remaining sample of sizes that can be encountered in practice. The results
show that the coverage of the “naive” confidence region is small (down to 60% depending
on the sample sizes) with respect to the confidence level (95%), whereas both the analytic
and bootstrap confidence regions perform correctly.

5 Application to Hepatitis C

5.1 Data description

The data are issued from a randomized controlled clinical trial dealing with hepatitis
C treatment, whose objective is to measure the impact of the therapeutic education in
the undertaking. The compared strategies are thus: treatment alone versus treatment
added to a consultation of education by a male nurse. Data of direct and indirect costs
are available. The utility values are assessed with the EuroQol EQ-5D questionnaire
validated in France The functional questionnaire of Nottingham Health Profiles (NHP)
is available. The data are collected at 0 weeks (at the inclusion), at 4, 8, 12, 24, 36 and
48 weeks. For some patients, the treatment duration is 24 weeks, and for the others the
duration is 48 weeks. The data are also collected 36 weeks and 48 weeks after the end
of the treatment is the treatment duration is 24 weeks, and 60 weeks and 72 weeks after
the end of the treatment is the treatment duration is 48 weeks.

Because of the missing data, the global scores of utility, NHP and cost are computed
as follows: an average is computed on the non-missing observation, weighted by the
duration between two observations. Table 3 presents some descriptive statistics.

5.2 Mapping

A linear regression is estimated to explain the utility by the NHP. The results are pre-
sented in Table 4.
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Table 2: Coverage and mean length of the 95% confidence intervals

Coverage Mean angle

nref
T nT Naive Analytic Bootstrap Naive Analytic Bootstrap

Linear Data Generating Process
40 400 0.9239 0.9818 0.9818 0.0929 0.1309 0.1275
30 600 0.7892 0.9620 0.9567 0.0761 0.1322 0.1273
20 800 0.6659 0.9598 0.9471 0.0659 0.1501 0.1403

Random Linear Data Generating Process
80 40 0.9593 0.9679 0.9685 0.4240 0.4538 0.4518

100 100 0.9417 0.9616 0.9616 0.2848 0.3104 0.3102
40 400 0.8348 0.9667 0.9605 0.1324 0.2337 0.2265
30 600 0.7495 0.9620 0.9523 0.1101 0.2520 0.2406
20 800 0.6349 0.9540 0.9437 0.0826 0.2519 0.2319

Non-Gaussian Random Linear DGP
40 400 0.8000 0.9538 0.9495 0.1457 0.2666 0.2591
30 600 0.7057 0.9577 0.9498 0.1010 0.2624 0.2511
20 800 0.6112 0.9461 0.9381 0.0872 0.3170 0.2886

Nonlinear Data Generating Process
40 400 0.9512 0.9580 0.9321 0.7086 0.7383 0.7164
30 600 0.9382 0.9559 0.9171 0.5827 0.6292 0.5989
20 800 0.9230 0.9483 0.9207 0.5119 0.5967 0.5608

nref
T is the in sample size used to assess the mapping. nT is the out of sample size

where the utility values are predicted.

The NHP has a good power of explanation: the R2 is about 0.4 for the standard
treatment, and about 0.6 for the alternative treatment. The is can be used to do mapping
to extrapolate utility values.

5.3 Cross validation

A sub-sample of various sizes is drawn from the real dataset with replacement. More
precisely, the triplet (Xi, Ui, Ci) is drawn, to keep the correlation structure. The remaining
sample is also drawn from the real dataset with replacement. Then, the mapping is
applied from the sub-sample to the remaining sample. The procedure is repeated 10,000
times to get the coverage at the 95% confidence level of the confidence regions. The
mean angle is also provided. The number of bootstrap replications is B = 999. The
performance is provided in Table 5.

Again, the performance shows that the analytic and the bootstrap methods perform
better than the naive method. The analytic method performs a little bit better than the
bootstrap method.
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Table 3: Descriptive statistics

Treatment Sample size Missing data
Standard 57 15
Alternative 63 9

Average variable Treatment Mean Standard Min. Max.
per week deviation

EuroQol EQ-5D Standard 0.70 0.15 0.31 0.92
Alternative 0.76 0.14 0.38 1.00

NHP Standard 193.07 115.53 6.97 427.42
Alternative 176.64 114.84 0.00 401.98

Cost Standard 172.40 53.68 77.34 369.16
Alternative 165.70 45.56 72.54 399.26

6 Conclusion

In this paper, the case where the utility is measured on a subsample of patients is dealt
woth. Thus, the link between some explanatory variables and the utility (often called
mapping) can be estimated in the aim to calculate the mean utility on the entire sam-
ple. But the variability of this link can also be estimated and can be used to handle
the uncertainty around the ICUR (to build a the confidence region). However, in many
studies, only the explanatory variables are available, such as technical or medical ques-
tionnaires, and the authors predict the utility using mapping techniques and value for the
mapping parameters given by some experts in reference articles or reports. These values
allow to compute the mean utility, but it is impossible to compute any confidence region
around this ICUR, and it is impossible to take any decision-making on the basis of this
kind of study. In this paper, we propose two methods –one is analytic, the other one is
bootstrap– accounting for the mapping extrapolation and providing accurate confidence
regions, allowing a reliable decision-making. A cross validation on data are issued from
a randomized controlled clinical trial dealing with hepatitis C confirms these results.

Appendix
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Table 4: Utility of each treatment with respect to the NHP
Alternative treatment

Standard Prob Standardized Cor with
Variable Estimate Error t-value > |t| Estimate Dep Var
Constant 536.5009 46.5257 11.5312 0.000??? — —
NHP -468.5412 63.4275 -7.3870 0.000??? -0.6464 -0.6464

Dependent variable: EQ-5D; Valid cases: 78; R2=0.418; R̄2=0.410;
F(1,76)=54.569; Probability of F=0.000???

Standard treatment

Standard Prob Standardized Cor with
Variable Estimate Error t-value > |t| Estimate Dep Var
Constant 572.7864 33.3699 17.1647 0.000??? — —
NHP -528.0491 43.2324 -12.2141 0.000??? -0.7737 -0.7737

Dependent variable: EQ-5D; Valid cases: 102 R2=0.599; R̄2=0.595;
F(1,76)=149.186; Probability of F=0.000???

?: significant at 5%; ??: significant at 2%; ???: significant at 1%.

Table 5: Coverage and mean angle of the 95% confidence intervals

Sample Sizes Coverage Mean angle
n1 = n0 m1 = m0 Naive Analytic Bootstrap Naive Analytic Bootstrap

40 200 0.9112 0.9437 0.9302 3.4089 4.6246 4.5043
30 300 0.8917 0.9461 0.9336 3.1969 4.5627 4.3657
20 400 0.8416 0.9437 0.9243 3.0314 4.5871 4.2805

Mean nref
T is the in sample size (in average) in proportion of the original sample

size used to assess the mapping. Mean nT is the out of sample (in average) in
proportion of the original sample size size where the utility values are predicted.
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A Proof of analytic confidence interval

Assume the following linear model:

Ui = Xiβ + εi.

Let the in-sample be denoted: i = 1, . . . , n, and the out-of-sample be denoted: i =
n + 1, . . . , n + m.

The aim is to assess the out-of-sample mean utility:

µUout
= E(Uout,i) = E(Xout,i)β.

The estimator of µUout
is:

µ̂Uout
= X̄outβ̂in =

1

m
ι′mT Xout(X

′
inXin)−1X ′

inUin,

where ιmT = (1, . . . , 1)′. It can be noted that:

µ̂Uout
=

1

m
ιmT Xoutβ +

1

m
ιmT Xout(X

′
inXin)−1X ′

inεin. (71)

Then, the estimator has the following properties.

A.1 Bias

E(µ̂Uout
) = E(Xout,i)β, the estimator is unbiased.

A.2 Variance

V (µ̂Uout
) = V (X̄outβ̂in).

From Equation 71, we have:

V
(
µ̂Uout

)
= V

[
X̄outβ + X̄out(X

′
inXin)−1X ′

inεin
]

(72)

= V
[
X̄outβ

]
+ V

[
X̄out(X

′
inXin)−1X ′

inεin
]

+2 · cov
[
X̄outβ, X̄out(X

′
inXin)−1X ′

inεin
]

(73)

= A + B + 2 · C (74)

A =
1

m
β′V (Xout,iβ) =

1

m
β′ΩXout

β (75)

B = E
[
X̄out(X

′
inXin)−1X ′

inεinε′inXin(X ′
inXin)−1X̄ ′

out
]

−
{
E

[
X̄out(X

′
inXin)−1X ′

inεin
]}2

(76)

= E
{
E

[
X̄out(X

′
inXin)−1X ′

inεinε′inXin(X ′
inXin)−1X̄ ′

out|X
]}

−
{
E

{
E

[
X̄out(X

′
inXin)−1X ′

inεin|X
]}}2

(77)

= E
{
X̄out(X

′
inXin)−1X ′

inE
[
εinε′in|X

]
Xin(X ′

inXin)−1X̄ ′
out

}
−

{
E

{
X̄out(X

′
inXin)−1X ′

inE
[
εin|X

]}}2
(78)
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Since E
[
εinε′in|X

]
= σ2

εIn and E
[
εin|X

]
= 0, then

B = σ2
εE

{
X̄out(X

′
inXin)−1X̄ ′

out
}

(79)

C = E
[
X̄outβX̄out(X

′
inXin)−1X ′

inεin
]

(80)

−E
[
X̄outβ

]
· E

[
X̄out(X

′
inXin)−1X ′

inεin
]

(81)

= 0 (82)

V
(
µ̂Uout

)
=

1

m
β′ΩXout

β + σ2
εE

{
X̄out(X

′
inXin)−1X̄ ′

out
}

. (83)

It should be noted that X̄out(X
′
inXin)−1X̄ ′

out = O
(

1
n

)
. Then, as n −→ ∞ and m −→

∞, V
(
µ̂Uout

)
−→ 0.

In practice, this variance can be estimated as follows:

V̂
(
µ̂Uout

)
=

1

m
β̂′
inΩ̂Xout

β̂in + σ̂2
εin

X̄out(X
′
inXin)−1X̄ ′

out,

where Ω̂Xout
is estimated on the whole sample rather than only on Xout to increase the

precision.

A.3 Covariance with mean cost

Cov
(
µ̂UT

out
, C̄T

out

)
= Cov

 1

mT
ι′mT XT

outβ
T +

1

mT
ι′mT XT

out(X
T ′

inXT
in)−1XT ′

inεT
in,

1

mT

nT +mT∑
i=nT +1

CT
i

 ,(84)

= Cov

 1

mT
ι′mT XT

outβ
T ,

1

mT

nT +mT∑
i=nT +1

CT
i

 ,

+ Cov

 1

mT
ι′mT XT

out(X
T ′

inXT
in)−1XT ′

inεT
in,

1

mT

nT +mT∑
i=nT +1

CT
i

 , (85)

=
1

(mT )2

nT +mT∑
i=nT +1

Cov
(
ι′mT XT

outβ
T , CT

i

)
,

+
1

(mT )2

nT +mT∑
i=nT +1

Cov
(
ι′mT XT

out(X
T ′

inXT
in)−1XT ′

inεT
in, CT

i

)
, (86)

=
1

(mT )2

nT +mT∑
i=nT +1

ι′mT Cov
(
XT

out, C
T
i

)
βT ,

+
1

(mT )2

nT +mT∑
i=nT +1

ι′mT Cov
(
XT

out(X
T ′

inXT
in)−1XT ′

inεT
in, CT

i

)
. (87)

Since Cov
(
XT

j,k,out, C
T
i

)
=

{
0 if j 6= i,
γT

k if j = i.
, then

ι′mT Cov
(
XT

out, C
T
i

)
βT = γT ′βT for all i > nT . (88)
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In addition, we have:

Cov
(
XT

out(X
T ′

inXT
in)−1XT ′

inεT
in, CT

i

)
= E

[(
XT

out(X
T ′

inXT
in)−1XT ′

inεT
in − E(XT

out(X
T ′

inXT
in)−1XT ′

inεT
in)

) (
CT

i − µT
C

)]
.(89)

Since E(XT
out(X

T ′

inXT
in)−1XT ′

inεT
in) = E(XT

out(X
T ′

inXT
in)−1XT ′

in)E(εT
in) = 0, then

Cov
(
XT

out(X
T ′

inXT
in)−1XT ′

inεT
in, CT

i

)
= E

[(
XT

out(X
T ′

inXT
in)−1XT ′

inεT
in

) (
CT

i − µT
C

)]
, (90)

= E
{

E
[(

XT
out(X

T ′

inXT
in)−1XT ′

inεT
in

) (
CT

i − µT
C

)
|X

]}
, (91)

= E
{(

XT
out(X

T ′

inXT
in)−1XT ′

in

)
E

[
εT
in

(
CT

i − µT
C

)
|X

]}
. (92)

Since i > nT and since for εin the individuals j correspond to j ≤ nT , we have:

E
[
εT
in

(
CT

i − µT
C

)
|X

]
= E

[
εT
in

]
E

[(
CT

i − µT
C

)
|X

]
= 0. (93)

By replacing expression of Equation 93 in Equation 92, we get:

Cov
(
XT

out(X
T ′

inXT
in)−1XT ′

inεT
in, CT

i

)
= 0. (94)

By replacing expressions in Equation 88 and in Equation 94 into Equation 87, we get:

Cov
(
µ̂UT

out
, C̄T

out

)
=

1

mT
γT ′βT . (95)

It should be noted that Cov
(
µ̂UT

out
, C̄T

out

)
−→ 0 as mT −→∞. Cov

(
µ̂UT

out
, C̄T

out

)
can

be estimated as follows:

Ĉov
(
µ̂UT

out
, C̄T

out

)
=

1

mT
γ̂T
out

′β̂T
in. (96)
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255–276, 2003. 3

K. J. Stevens, C. J. McCabe, and J. E. Brazier. Mapping between visual analogue scale
and standard gamble data; results from the uk health utilities index 2 valuation survey.
Health Econ., Health Economics Letters, 15:527–533, 2006. Published online 3 January
2006 in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/hec.1076. 1

G. W. Torrance. Social preferences for health states: an empirical evaluation of three
measurement techniques. Socio-Econ Planning Sci, 10(3):129–136, 1976. 1

G. W. Torrance, D. H. Feeny, W. J. Furlong, R. D. Barr, Y. Zhang, and Q. Wang.
Multiattribute utility function for a comprehensive health status classification system.
health utilities index mark 2. Med Care, 34(7):702–722, 1996. 1

A. Tsuchiya, J. Brazier, E. McColl, and D. Parkin. Deriving preference-based single
indices from non-preference based condition-specific instruments: Converting aqlq into
eq5d indices. Sheffield Health Economics Group, Discussion Paper Series Ref: 02/1;
The University of Sheffield, ScHARR, School of Health and Related Research, May
2002. 1

N.C. Weber. On resampling techniques for regression models. Statistics and Probability
Letters, 2:275–278, 1984. 3.4

20


	1 Introduction
	2 Background: the incremental cost-utility ratio
	2.1 Definition and estimation
	2.2 Assumptions and statistical properties
	2.3 Linear approximation of the mapping
	2.3.1 Utility modeling and estimate
	2.3.2 Cost estimate
	2.3.3 Utility-Cost dependence modeling and estimate


	3 Confidence regions for the ICUR accounting for mapping
	3.1 Recall of the Fieller's method (case of no mapping)
	3.2 ``Naive'' confidence region
	3.3 Analytic confidence region
	3.4 Nonparametric bootstrap confidence region

	4 Performance of the methods: Monte Carlo experiments
	4.1 Data Generating Process
	4.1.1 Linear Case
	4.1.2 Random Linear Case
	4.1.3 Non-Gaussian Random Linear Case
	4.1.4 Nonlinear Case

	4.2 Performance

	5 Application to Hepatitis C
	5.1 Data description
	5.2 Mapping
	5.3 Cross validation

	6 Conclusion
	A Proof of analytic confidence interval
	A.1 Bias
	A.2 Variance
	A.3 Covariance with mean cost


