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Abstract

Mapping spatial distributions of disease occurrence can serve as a useful tool for identifying

exposures of public health concern. Infant mortality is an important indicator of the health status

of a population. Recent literature suggests that neighborhood deprivation status can modify the

effect of air pollution on preterm delivery, a known risk factor for infant mortality. We

investigated the effect of neighborhood social deprivation on the association between exposure to

ambient air NO2 and infant mortality in the Lille and Lyon metropolitan areas, north and center of

France, respectively, between 2002 and 2009. We conducted an ecological study using a

neighborhood deprivation index estimated at the French census block from the 2006 census data.

Infant mortality data were collected from local councils and geocoded using the address of

residence. We generated maps using generalized additive models, smoothing on longitude and

latitude while adjusting for covariates. We used permutation tests to examine the overall

importance of location in the model and identify areas of increased and decreased risk. The

average death rate was 4.2‰ and 4.6‰ live births for the Lille and Lyon metropolitan areas

during the period. We found evidence of statistically significant precise clusters of elevated infant
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mortality for Lille and an east-west gradient of infant mortality risk for Lyon. Exposure to NO2

did not explain the spatial relationship. The Lille MA, socioeconomic deprivation index explained

the spatial variation observed. These techniques provide evidence of clusters of significantly

elevated infant mortality risk in relation with the neighborhood socioeconomic status. This method

could be used for public policy management to determine priority areas for interventions.

Moreover, taking into account the relationship between social and environmental exposure may

help identify areas with cumulative inequalities.

1. Introduction

Infant mortality (death less than one year of age) is recognized as a key indicator of the

health status of a population (OECD-Organization for Economic Co-operation and

Development, 2010). Several studies have investigated the association between air pollution

and infant mortality in countries with relatively high levels, as well as in countries with

lower pollution levels (Tsai et al., 2006; Woodruff et al., 2008; Vrijheid et al., 2012; Romieu

et al., 2004; Ritz et al., 2006; Lin et al., 2004; Kaiser et al., 2004; Hajat et al., 2007) . The

recent literature has established that the neighborhood environment of mother and child has

an influence on future birth outcomes independently of individual risk factors (O'Campo et

al., 1997; Ponce et al., 2005; Luo et al., 2006; Généreux et al., 2008; Zeitlin et al., 2011).

The neighborhood socioeconomic status (SES) has been mentioned as an important

determinant of birth outcomes, in combination with air pollution (Ponce et al.; 2005,

Carbajal-Arroyo et al., 2011). Low SES populations may be more susceptible to air

pollution than those with higher SES, as several factors more prevalent in disadvantaged

populations may modify the pollution-mortality relationship (Yi et al., 2010). Genereux et al

shown that area-level maternal education and the percent of low income families were

associated with the distance between the residence and the nearest highway, which, in turn,

were related to differences in exposure to air pollution and the probability of preterm birth

(Généreux et al., 2008). In two studies performed in Mexico (Carbajal-Arroyo et al., 2011;

Romieu et al., 2004), the risk of death was significantly higher in infants from low and/or

medium-SES areas than in those from high SES areas. Most of these studies are focused in

the United States, Canada (Salihu et al., 2011; Ponce et al., 2005; Généreux et al., 2008;

Jerrett, Buzzelli, et al., 2005) or countries in economic transition (Carbajal-Arroyo et al.,

2011; Romieu et al., 2004; Yi et al., 2010). The number of studies in Europe is very limited

(Scheers et al., 2011; Vrijheid et al., 2012). To identify geographic areas with an

unfavorable infant mortality risk and provide relevant data to design local health policies,

ecological studies are useful. In particular when the fine resolution scale of such areas

allows to take into account the specificity of the territory in terms of social and

environmental characteristics. However, this type of study requires a rigorous methodology

in order to minimize ecological biases and to account for the dependency of spatial units. An

original statistical method applicable in spatial epidemiologic settings is a generalized

additive model (GAM) which can be applied with locally weighted regression smoothers

(LOESS) to account for geographic location as a possible predictor of the infant mortality

rate (Vieira et al., 2005; Vieira et al., 2008; Webster et al., 2006). GAMs provide a spatial

representation of health risks, which may be a useful tool to understand the distribution of
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disease, identifying areas of high disease prevalence, and therefore to set up focused public

health interventions (Gatrell and Bailey, 1996; Jerrett et al., 2010).

In this paper, we assess social and environmental inequalities in the spatial distribution of

infant mortality in two major metropolitan areas in France. This study has several

objectives: i) to detect spatial variations of infant mortality across census blocks, ii) to

identify areas of significantly increased and decreased risk adjusted on known risk factors

(social characteristics and air pollution, both determined at a neighborhood level), and iii) to

illustrate the relevance of spatial epidemiology techniques using generalized additive

models, smoothing on longitude and latitude, while adjusting for covariates.

2. Materials and methods

2.1 Study sites and study design

The study is ecological and investigates the spatial distribution of infant mortality in two

major metropolitan areas (MAs) in France. The Lille metropolitan area (Nord-Pas-de Calais

region, northern France), named Lille Métropole, has an approximate population of 1.1

million inhabitants divided into 85 municipalities and 506 census blocks, for a total area of

611.45 km2. The Lyon metropolitan area (Rhône-Alpes region, mid-eastern France), named

Grand Lyon, is subdivided into 58 municipalities and 510 census blocks for a total

population of approximately 1.2 million inhabitants in an area of 527.15 km2.

The statistical unit is the sub-municipal French census block (called IRIS “Îlot Regroupé

pour l'Information Statistique”) defined by the National Institute of Statistics and Economic

Studies (INSEE). It is the smallest administrative unit for which socioeconomic and

demographic data are available in France. This geographical unit averages 2000 inhabitants

and is constructed to be as homogenous as possible in terms of socio-demographic

characteristics and land use. The delineations of the census blocks provided by INSEE also

take into account the urban landscape and obstacles that could divide it, such as major traffic

roads, green places and water bodies. These two metropolitan areas are of particular interest

because they exhibit contrasts in their urban landscape and in some important demographic

and socio-economic characteristics.

2.2 Health outcome

Infant mortality is defined as the number of babies who died during their first year of life per

number of births that occurred during this time period. Cases were collected from death

certificates in the city hall of each municipality in the MA and the parental addresses were

geocoded to the census blocks. A total of 516 and 684 cases of infant deaths in Lille MA and

the Lyon MA, respectively, occurred during the period 2002-2009. Figure 1.A illustrates the

spatial distribution of the prevalence of infant mortality by tertiles at the census block level

of Lille and Lyon MAs.

2.3 Potential cofounders

Deprivation index—For the analysis of socioeconomic disparities, a deprivation index

was constructed for all census blocks of the metropolitan areas of Lille and Lyon. The
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detailed methodological development of this index has been described elsewhere (Havard et

al., 2008). In short, the socioeconomic data were obtained from the 2006 national census and

provided counts of population, households or residences at the census block level classified

by social, economic and demographic characteristics. Using these raw data, we constructed

48 indicators at the census block level according to INSEE's definitions. These variables can

be divided into 5 domains: family and household, immigration status and mobility,

employment and income, education, housing. Principal components analysis was used to

synthesize information from these data. To construct a single numeric index for all of the

blocks, we maximized the inertia of the first component by deleting all of the variables only

weakly correlated with it and the variables with a contribution lower than the average. This

allowed us to identify an axis, composed of 21 variables, which explained 63 percent of the

inertia of the initial variables for the Lille MA and 54 for the Lyon MA.

The socioeconomic variables included in both MAs were Foreigners (%), Immigrants

population (%), Single-parent families (%),Unemployed people (%), Employed workers

(%), People with stable job (%),Non-owner occupied primary residence (%), Population 15

years and over without diploma (%), Population 15 years and over with post-secondary or

secondary diploma (%), Individual house as a primary residence (%), Apartment building as

a primary residence (%), Primary residence with a minimum surface area of 100 meters (%),

Subsidized housing among all primary residences (%), Primary residence with a garage or

other parking space (%), Households without a car (%), Households with 2 or more cars

(%), and Median income per consumption unit. Some variables are specific to one MA, as

People aged 25 years or younger (%) (Lille), People with insecure job (Lille) (%), Self-

employed people (Lyon) (%), Managers workers (Lyon) (%), Blue-collar workers (Lyon)

(%). Figure 1.B shows the spatial distribution of the deprivation index by tertiles on a map

of the census blocks of Lille and Lyon MA.

Air pollution concentrations—Annually ambient concentrations of nitrogen dioxide

(NO2) were modeled by the local air quality monitoring network (Atmo Nord Pas-de-Calais,

Air Rhône-Alpes) for each block and the entire study period (2002–2009). The two

networks developed and tested a methodological approach to describe and characterize

disparities in environmental exposures at a local scale for that period. They used different

deterministic models: ADMS (Atmospheric Dispersion Modeling System) Urban for the

Lille MA (Carruthers et al., 2000; McHugh C et al., 1997) and SIRANE for the Lyon

MA(Soulhac L et al., 2011; Soulhac L et al., 2012). These models integrate meteorological

data: air temperature, wind speed and direction, relative humidity, barometric pressure

(supplied by Météo France, the French meteorologic service), emission sources according to

their contribution to ambient air pollution and background pollution measurements as input

parameters. Selected emission sources were linear sources (main roads), surface sources

(diffuse road sources and residential and tertiary emissions) and important point sources: 31

for the Lille MA and 91 for the Lyon MA (the main polluting industries). The

Agglomerative Hierarchical Clustering (AHC) was chosen to associate each census blocks

with a measuring background permanent station, then assign daily variations. In total, 18

stations were used for the Lille MA and 31 for the Lyon MA. For Lille, in 2009 the mean

concentration was modeled using the ADMS model. To reconstruct annual mean
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concentrations of NO2 from 2002-2008, the method used consists of a spatial interpolation

of data stations that uses spatial concentrations of 2009 as an auxiliary variable. Kriging

gives accurate results at the stations for the years 2002–2008. For Lyon, the annual mean

concentrations were calculated with the SIRANE model without spatial interpolation, nor

measurements assimilation. In a recent review, Jerrett et al. demonstrated the effectiveness

and reliability of this type of model for assessing air quality in health effects assessment

research (Jerrett et al., 2010). Figure 1.C shows the spatial distribution of the NO2

concentrations by tertiles on a map of the census blocks of the Lille and Lyon MAs.

2.4 Statistical methods

Geocoding and descriptive data—Through the efforts to collect cases information, we

obtained the parental address of residence of each case, with the authorization of the national

committee on digitalized information and privacy (CNIL). Residential addresses were

matched to the corresponding census blocks using map databases (Correspondance

Adresses-Zones Urbaines, 2004) a software issued by INSEE. The following data were

available: longitude and latitude of the centroid of each census block, reported number of

cases, total births, the modeled NO2 concentration (µg/m3) and the deprivation index

reported in tertiles of the distribution. For east /west comparisons, the Lyon MA was divided

using geographic boundaries: the “Rhône” river that flows north-east to south. No

geographic boundary divided the Lille MA into eastern and western parts, so we used a

vertical line to divide it into two equal surfaces.

Census blocks without any birth (for example, an industrial census block or a park) were

excluded from the analysis. We excluded 7 census blocks without births and 2 without

socioeconomic information in both Lille and Lyon MAs. We also excluded 24 census blocks

(4.5%) in Lille and 13 census blocks in Lyon (2.5%) that had no information on air

pollution. The final dataset for Lille included 471 census blocks and 488 census blocks for

Lyon during the years 2002 to 2009.

Local disease mapping—We used generalized additive models to estimate census block

infant mortality risk, a form of non-parametric or semi parametric regression with the ability

to analyze area-based data adjusting for covariates.

We modeled location, a potential proxy measure of unknown exposure or uncontrolled risk

factors, using a smooth (S) of longitude (X) and latitude (Y) with a Poisson link function.

(equation 1)

where the left-hand side is the logarithm of the disease risk at the census block's centroid

(X,Y), according to the size of the population (offset(pop)), and γ is a vector of parameters

associated with Z, the vector of covariates.

The model is semi-parametric because it includes both nonparametric and parametric

components. Without the smooth function, S(X,Y), the model becomes an ordinary Poisson

regression on the covariates. Omitting the covariates produces a crude (unadjusted) map. We
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used a LOESS smooth which adapts to changes in population density previously used in

case control studies (Vieira et al., 2008; Vieira et al., 2005; Webster et al., 2006; Kelsall and

Wakefield, 2002).

The amount of smoothing depends on the percentage of the data points in the neighborhood,

referred to as the span size. GAMs also allow selection of “optimal” span size. We used R

software using the gam package, which is written by Trevor Hastie and is an implementation

of the GAM framework of Hastie and Tibshirani 1990, to perform the generalized additive

modeling and ArcView 9.3 software (ESRI, Inc., Redlands, California) to map the results of

our analyses. We determined the optimal amount of smoothing for each map by minimizing

the Akaike's Information Criterion (AIC). Small span sizes produce bumpier surfaces and

larger span sizes produce smoother surfaces. As the span size increases, the amount of bias

in the fit increases and the variance decreases.

GAMs also provide a framework for testing hypotheses. There are a number of ways to test

the global null hypothesis that disease status does not depend on location, i.e., that the map

is flat. Similar to analysis of variance in ordinary linear regression, we examined the overall

significance of location using the difference in deviance of the complete model (equation 1)

and the reduced model omitting the smoothing term. The R software provides an

approximate p-value for this statistic assuming a chi square distribution. Because the latter

assumption is in general not true for GAMs, we calculated the p-value using a permutation

test (Vieira et al., 2002). To test the null hypothesis of no association between infant

mortality rate and location, we randomly reassigned the coordinates of the census blocks

while keeping the case counts, population, and covariates fixed. We sampled from the null

permutation distribution 999 times in addition to the original model. For each permutation,

we ran the GAM using the optimal span of the original data and computed the deviance

statistic. We divided the rank of the observed value by 1000 to obtain the approximate

permutation p-value. If the deviance global statistic indicated that location was significant at

the 0.05 level, we then identified areas with significantly increased or decreased risk. We did

this by obtaining a distribution of the log risk at every census block using the same set of

permutations we used for calculating the global statistics. The areas of significantly

decreased risk (“cold spots”) include all census blocks that rank in the lower 2.5% of the

census blocks distributions. Areas of significantly elevated risk (“hot spots”) include all

census blocks that rank in the upper 2.5% of the census block distributions. (Vieira et al.,

2005; Young et al., 2010)

We first performed a spatial analysis using the crude model to determine the unadjusted

geographic variation in infant mortality. Spatial patterns in the underlying crude analysis

could be due to a number of factors with a geographic component. In this study, we were

primarily interested by spatial patterns that can be explained by the deprivation index or the

NO2 concentrations. To assess the contribution of these factors to the underlying spatial

patterns, we performed adjusted analyses with the deprivation index alone, the NO2

concentration alone, the deprivation index and NO2 concentration together, and with their

interaction.
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3. Results

3.1. Descriptive statistics

The infant mortality rate is equal to 4.2 and 4.6 per 1000 live births for the Lille and Lyon

MAs, respectively, between 2002 to 2009. The classes of tertiles of the socioeconomic

deprivation and the NO2 concentration for both MAs are summarized in the Table 1. We

note that the classes of tertiles of NO2 concentrations of the Lyon MA are higher than in the

Lille MA (Table 1). Figure 2 shows the temporal trends of the NO2 concentrations during

the period 2002 to 2009. In the Lille MA, the meteorology was penalizing in terms of

dispersion during years 2003, 2005, which led to higher annual levels of nitrogen dioxide.

The pattern is quite stable in both graphs, but the mean NO2 in the Lyon MA is higher than

40µg/m3 which is the limit value set by the WHO European community.

Figure 3 reveals two different relationships between the deprivation index and the NO2

concentrations. For Lille, the relationship follows a linear trend, the most deprived

population living in the most exposed census blocks, whereas in Lyon, the medium class of

deprivation is the most exposed. The p-values for an anova-test to compare the mean NO2

concentrations between the classes of deprivation are significant for both MAs (p<0.0001).

3.2 Spatial analysis

The crude (unadjusted) maps show significant geographic variation based on the global

statistics, with p=0.005 for the Lyon and <0.001 for the Lille MA (Table 2, Figures 4.A and

5.A). For Lille, two significant urban hotspots are visible that include the two major cities of

the metropolitan area, Lille city in the center and Roubaix, a city in the north east of the

metropolitan area (Figure 4A). For Lyon, Figure 5.A shows a different pattern of spatial

variability as indicated by the large span (span=0.95). Rather than multiple clusters (i.e..,

bumpier surface) that we observe with a smaller span, there is a visible significant spatial

gradient of risk from northwest to southeast (p<0.0001), with a cluster of significant

elevated mortality situated in the east of the map. In the Appendix, we also note contrasts in

some important demographic and socio-economic characteristics between east and west of

the Lyon MA.

After adjustment for NO2 concentrations alone, Figure 4.B shows little differences

compared to the results from the crude analysis in the Lille MA: the same location pattern

remains significant, suggesting that exposure to NO2 does not explain the spatial pattern of

infant mortality (Table 2-A). The same holds true in the Lyon MA (Figure 5.B and Table 2-

B).

After adjusting for deprivation alone, the results differ depending on the MA. For Lille,

Figure 4.C no longer shows any area of statistically significant risk and Table 2-A exhibits a

borderline significant p value (p=0.07). This strongly suggests that socioeconomic status

explains a great part of the spatial variability of infant mortality. Populations living in census

blocks of higher deprivation have a significant greater risk of infant mortality than

populations in the census blocks of the lower deprivation (p=<0.001). For Lyon, Figure 5.C

shows that the magnitude of the infant mortality decreases compared to figures derived from

the crude analysis (Figure 5.A and Table 2-B); however, there is little change in the
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geographic pattern, and the global statistic for location remains significant (p=0.025),

suggesting that socioeconomic status alone does not entirely explain the spatial variability.

Finally, fully adjusting with the two variables (SES and NO2) in the models shows little

change in the Lille MA (Table 2-A and Figure 4.D) and less pronounced hot and cold spots

than in the crude and SES-only adjusted maps in the Lyon MA (Figures 5.A and 5.D); this

speaks in favor of a joint effect of SES and SES and NO2. However, the area of increased

risk of infant mortality is still visible (and borderline significant) in the southeast of the

Lyon MA, suggesting that infant mortality is yet to be explained by other factors not

accounted for in our model. No interaction is shown between the two factors in the Lille or

Lyon MAs.

4. Discussion

We used generalized additive models to explore the spatial variation of infant mortality in

two major French metropolitan areas. Our results highlight differences in the spatial

inequality patterns of infant mortality across the two metropolitan areas.

For the Lille MA, socioeconomic deprivation explained the spatial variations of infant

mortality across the different census blocks. More precisely, the two significant clusters of

elevated infant mortality detected in the cities of Lille and Roubaix (a city near the Belgium

border in the north east of the metropolitan area) are no longer apparent after adjustment for

the census blocks socioeconomic status. In the Lyon MA, adjusting for socioeconomic status

did no erase the clusters of elevated infant mortality. For both MAs, a positive trend of

infant mortality from the most deprived to the less deprived census blocks was found.

Several studies demonstrated that the socioeconomic status is an important risk factor for a

variety of birth outcomes (Guildea et al., 2001; Krieger et al., 2003; Elo et al., 2009; Zeka et

al., 2008; Blumenshine et al., 2010; Singh and Kogan, 2007; Luo et al., 2006; Arntzen et al.,

2004). During pregnancy, mothers are likely to face multiple stressful life events, including

lone-mother, unemployment, and little resources to deal with these conditions (Miranda et

al., 2009; O'Neill et al., 2003; Larson, 2007; Nkansah-Amankra, Dhawain, et al., 2010;

Nkansah-Amankra, Luchok, et al., 2010; Lu and B Chen, 2004). To improve upon the

methodology employed in ecological studies of health inequalities, it would be necessary to

carry out studies with individual data in which risk factors related to specific causes of infant

mortality are analyzed. These parental factors include poor health status (for example,

diabetes, obesity and chronic obstructive lung diseases), toxicants such as nicotine, caffeine,

cocaine or alcohol (Patra et al., 2011; O'Leary et al., 2009; Crane et al., 2011) and multiple

exposures to pollution (passive smoking, occupational exposure) that could act in addition to

or in synergy with access to healthcare. In the conclusion of their extensive analysis of the

epidemiologic literature David et al state that genetic factors fail to explain the strong

disparities in birth outcomes according to race in the US, which are better explained by

social determinants (David et al,2007).

In the two MAs, exposure to ambient air NO2 did not explain the spatial distribution of

infant mortality observed in the crude analysis, though the size of the areas of statistically

elevated risk did change. Some authors hypothesize that air pollution contributes to creating
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or accentuating the socioeconomic inequalities that exist for various illnesses, including

cancer, asthma and cardiovascular diseases (Forastiere et al., 2007; Barceló et al., 2009,

Jerrett 2005). It is now highly suspected to contribute to preterm births, intra-uterine growth

and perinatal mortality (Weck 2008, Ponce 2005, Slama 2008, Slama 2009, Bell 2007,

Woodruff 2008). In the city of Sao Paulo, Brazil, logistic regression revealed a gradient of

increasing risk of an early neonatal death with higher exposure to traffic-related air pollution

(De Medeiros et al., 2009). In Europe, Sheers et al. (2011) found that risk levels infant

mortality increased by 4% for a 10µg/m3 increase in daily PM10 among European children

under the age of one. In our study setting, NO2 concentrations stand as a global indicator of

air pollution associated with traffic and industrial emissions (Chaix et al., 2006; Vrijheid et

al., 2012).

After the final multivariate models were constructed, we tested two-way interactions

between pollution and the socioeconomic status. While our main intent was to control for

confounding, some studies suggest variables such as socioeconomic status may modify the

air pollution–mortality association (Barceló et al., 2009; Jerrett et al., 2005; Martins et al.,

2004). Jerrett et al in 2005, in a study of Hamilton (Canada), found that high mortality was

associated with exposure to air pollution (specially SO2) in a citywide model and in intra-

urban zones with lower socioeconomic characteristics. In our case, we found no significant

results. This finding must be tempered with recognition that the interaction terms themselves

tended to be collinear with one or more of the independent variables.

The interpretation of our findings must also consider some weaknesses, notably in exposure

assessment. First, the use of atmospheric dispersion models such as the ADMS-Urban or

SIRANE may be limited by the extensive amount of input data that are required. Uncertainty

may come from data sources, estimation methods, or measurement tools. However, in term

of validation, the models give quite acceptable results. For the Lille MA, five monitoring

sites were available to evaluate the NO2 model's results and the correlations varied between

0.63 to 0.74. For the Lyon MA, four monitoring sites were available for this comparison and

high correlations between the model's predictions and the measured NO2 values were

observed (0.78-0.96). To be mentioned is that NO2 concentrations in the Lille MA were

modeled only for 2009, and used kriging for previous years, which yields some uncertainty.

Models such as land-use regression, which are less complex to implement and can also

provide reliable estimates of traffic-related air pollution, could have been a relevant

alternative (Jerrett 2010).

This work has some notable strengths. Small area analysis allows a deeper understanding of

the geographic patterns of health inequalities and is essential for revealing local-level

inequalities that are often masked when health estimates are produced at large area scales

(cities, counties, states). Laurent 2007 showed that several studies that had used

socioeconomic characteristics measured at an aggregate level (municipality, county or

region) did not find the effect of pollution to vary across different areas, whereas many

studies that measured socioeconomic conditions at a more disaggregate level (district,

neighbourhood or census blocks) did reveal joint effects of the two families of factors.
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One other strength of our approach is that we could draw in the maps areas of significantly

elevated risk (hot spots) by delineating areas that were above the 97.5% confidence interval.

This was done by permutation tests, which are flexible hypothesis tests not making prior

assumptions on parameters and outcome distribution. Simulation studies showed that the

permutation tests behave considerably better than the corresponding classical tests if

measured by the critical values attained. We modeled health risks by GAMs. Differently

from classical cluster detection methods, GAMs make it possible to include a non-

parametric term to account for spatial variation in the health risk, as well as to adjust for

potential confounders, and consider multiple tests: a global one and a test to determine areas

of significantly elevated risks. But the limitation that Gam doesn't have compare to other

famous method is that the clusters are not circle or ellipses which could detect clusters of

size larger than that of real clusters encompassing neighboring regions.

Finally, the procedure to model air pollution concentrations at surface areas of the size of

census blocks provides unbiased estimates of exposure to ambient air pollution. Jerrett et al

in 2010 demonstrated the effectiveness and reliability of this type of model for assessing air

quality in health effects assessment research. Some studies on reproductive effects of air

pollution used surrogate air pollution measures (e.g. average pollutant concentrations at

fixed ambient monitoring stations, distance to monitoring sites, vehicular traffic emissions,

proximity to highway, distance to main roads) to estimate maternal but failure to consider

spatial variations can lead to exposure misclassification and subsequent bias (Jerrett,

Burnett, et al., 2005).

5. Conclusion

The use of GIS and spatial analysis techniques has been shown to be useful tools to inform

public policy and determine areas that warrant specific intervention. In the present setting,

these techniques identified clusters of elevated infant mortality in relation with the

socioeconomic status, and marginally to air pollution. Moreover, this paper illustrates an

approach to take into account the combined effect, and possibly, the interaction between

socioeconomic characteristics and environment exposures and to identify areas which

cumulate conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A. Spatial distribution of infant mortality by census block in the Lyon and Lille MAs during

2002-2009. B. Spatial distribution of the deprivation index by census block in Lyon and

Lille MA during 2002-2009. C. Spatial distribution of the NO2 air pollution by census block

in Lyon and Lille MA during 2002-2009.
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Figure 2.
Yearly averages of the NO2 ambient air concentrations during the period 2002-2009 for the

Lille and Lyon MAs.

Figure 2 show the temporal trends of the NO2 concentration during the period 2002 to 2009.

In Lille MA, a meteorology penalizing in terms of dispersion, combined with majority of

traffic emissions for the years 2003, 2005, led to annual levels of nitrogen dioxide higher.

The pattern is quite stable in both graphs, but the mean NO2 in Lyon MA is higher than

40µg/m3 which represents the referent limit by the WHO.
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Figure 3.
Comparison of the NO2 average concentrations according to the classes of deprivation in the

Lille and Lyon MAs, period 2002-2009.
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Figure 4.
(A) Prevalence of infant mortality estimated by the GAMs in the Lille Metropolitan Area for

crude model (A), according to (B) NO2 air pollution exposure, (C) deprivation index and

(D). with the interaction term. Light grey to dark grey shading indicates lower to higher

prevalence. Solid lines identify areas with significantly increased rates (hotspots) and dashed

lines identify areas with significantly decreased rates (coldspots).
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Figure 5.
(A) Prevalence of infant mortality estimated by the GAMs in the Lyon Metropolitan Area

for crude model (A), according to (B) NO2 air pollution exposure, (C) deprivation index and

(D). with the interaction term. Light grey to dark grey shading indicates lower to higher

prevalence. Solid lines identify areas with significantly increased rates (hotspots) and dashed

lines identify areas with significantly decreased rates (coldspots).
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Table 2
Summary of the infant mortality models in the Lille and Lyon MAs

A.

Lille MA Span Deviance p value Global

Crude Model 0.30 <0.001

Adjusted by NO2 0.30 0.007

Adjusted by SES 0.95 0.070

Full Adjusted 0.95 0.124

Interaction model 0.95 0.125

B.

Lyon MA Span Deviance p value Global

Crude Model 0.95 0.005

Adjusted by NO2 0.95 0.001

Adjusted by SES 0.95 0.025

Full Adjusted 0.95 0.085

Interaction model 0.95 0.047
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